Kafka Broker
Kafka Broker
一:Kafka Broker 工作流程
1.1 Zookeeper存储的Kafka信息结构图
kafka在zookeeper中存储的信息很多,重点了解以下几点:
/kafka/brokers/ids [0,1,2] 记录当前集群中那些服务节点还存活。
/kafka/brokers/topics/first/partitions/0/state
{"leader":1, "isr":[0,1,2]}
记录谁是leader, 有哪些服务器/kafka/controller {"brokerid": 0} 辅助选举Leader
1.2 内容详解
1.2.1 topic 注册信息
/brokers/topics/[topic]
存储某个topic的partitions所有分配信息
# Schema
{
"version": "版本编号目前固定为数字1",
"partitions": {
"partitionId编号": [
同步副本组brokerId列表
],
"partitionId编号": [
同步副本组brokerId列表
],
.......
}
}
# Example:
{
"version": 1,
"partitions": {
"2": [1, 2, 3],
"1": [0, 1, 2],
"0": [3, 0, 1],
}
}
1.2.2 partition状态信息
/brokers/topics/[topic]/partitions/[0...N] 其中[0..N]表示partition索引号 /brokers/topics/[topic]/partitions/[partitionId]/state
# Schema:
{
"controller_epoch": 表示kafka集群中的中央控制器选举次数,
"leader": 表示该partition选举leader的brokerId,
"version": 版本编号默认为1,
"leader_epoch": 该partition leader选举次数,
"isr": [同步副本组brokerId列表]
}
# Example:
{
"controller_epoch": 1,
"leader": 3,
"version": 1,
"leader_epoch": 0,
"isr": [3, 0, 1]
}
1.2.3 Broker注册信息
/brokers/ids/[0...N]
每个broker的配置文件中都需要指定一个数字类型的id(全局不可重复),此节点为临时znode(EPHEMERAL)
# Schema:
{
"jmx_port": jmx端口号,
"timestamp": kafka broker初始启动时的时间戳,
"host": 主机名或ip地址,
"version": 版本编号默认为1,
"port": kafka broker的服务端端口号,由server.properties中参数port确定
}
# Example:
{
"jmx_port": -1,
"timestamp":"1525741823119"
"version": 1,
"host": "hadoop1",
"port": 9092
}
1.2.4 Controller epoch
/controller_epoch --> int (epoch)
此值为一个数字,kafka集群中第一个broker第一次启动时为1,以后只要集群中center controller中央控制器所在broker变更或挂掉,就会重新选举新的center controller,每次center controller变更controller_epoch值就会 + 1;
1.2.5 Controller注册信息
/controller -> int (broker id of the controller)
存储center controller中央控制器所在kafka broker的信息
# Schema:
{
"version": 版本编号默认为1,
"brokerid": kafka集群中broker唯一编号,
"timestamp": kafka broker中央控制器变更时的时间戳
}
# Example:
{
"version": 1,
"brokerid": 0,
"timestamp": "1525741822769"
}
1.2.6 Consumer均衡算法
当一个group中,有consumer加入或者离开时,会触发partitions均衡.均衡的最终目的,是提升topic的并发消费能力.
- 假如topic1,具有如下partitions: P0,P1,P2,P3
- 加入group中,有如下consumer: C0,C1
- 首先根据partition索引号对partitions排序: P0,P1,P2,P3
- 根据(consumer.id + '-'+ thread序号)排序: C0,C1
- 计算倍数: M = [P0,P1,P2,P3].size / [C0,C1].size,本例值M=2(向上取整)
- 然后依次分配partitions: C0 = [P0,P1],C1=[P2,P3],即Ci = [P(i * M),P((i + 1) * M -1)]
1.2.7 Consumer注册信息
/consumers/[groupId]/ids/[consumerIdString]
每个consumer都有一个唯一的ID(consumerId可以通过配置文件指定,也可以由系统生成),此id用来标记消费者信息.
是一个临时的znode,此节点的值为请看consumerIdString产生规则,即表示此consumer目前所消费的topic + partitions列表.
consumerId产生规则:
String consumerUuid = null;
if(config.consumerId!=null && config.consumerId)
consumerUuid = consumerId;
else {
String uuid = UUID.randomUUID()
consumerUuid = "%s-%d-%s".format(
InetAddress.getLocalHost.getHostName, System.currentTimeMillis,
uuid.getMostSignificantBits().toHexString.substring(0,8));
}
String consumerIdString = config.groupId + "_" + consumerUuid;
Schema:
{
"version": 版本编号默认为1,
"subscription": { //订阅topic列表
"topic名称": consumer中topic消费者线程数
},
"pattern": "static",
"timestamp": "consumer启动时的时间戳"
}
Example:
{
"version": 1,
"subscription": {
"topic2": 1
},
"pattern": "white_list",
"timestamp": "1525747915336"
}
1.2.8 Consumer owner
/consumers/[groupId]/owners/[topic]/[partitionId] -> consumerIdString + threadId索引编号
a) 首先进行"Consumer Id注册";
b) 然后在"Consumer id 注册"节点下注册一个watch用来监听当前group中其他consumer的"退出"和"加入";只要此znode path下节点列表变更,都会触发此group下consumer的负载均衡.(比如一个consumer失效,那么其他consumer接管partitions).
c) 在"Broker id 注册"节点下,注册一个watch用来监听broker的存活情况;如果broker列表变更,将会触发所有的groups下的consumer重新balance.
1.2.9 Consumer offset
/consumers/[groupId]/offsets/[topic]/[partitionId] -> long (offset)
用来跟踪每个consumer目前所消费的partition中最大的offset
此znode为持久节点,可以看出offset跟group_id有关,以表明当消费者组(consumer group)中一个消费者失效,
重新触发balance,其他consumer可以继续消费.
1.3 Kafka Broker 总体工作流程
1.4 Broker重要参数
参数名称 | 描述 |
---|---|
replica.lag.time.max.ms | ISR 中,如果 Follower 长时间未向 Leader 发送通信请求或同步数据,则该 Follower 将被踢出 ISR。该时间阈值,默认 30s。 |
auto.leader.rebalance.enable | 默认是 true。 自动 Leader Partition 平衡。 |
leader.imbalance.per.broker.percentage | 默认是 10%。每个 broker 允许的不平衡的 leader的比率。如果每个 broker 超过了这个值,控制器会触发 leader 的平衡。 |
leader.imbalance.check.interval.seconds | 默认值 300 秒。检查 leader 负载是否平衡的间隔时间。 |
log.segment.bytes | Kafka 中 log 日志是分成一块块存储的,此配置是指 log 日志划分成块的大小,默认值 1G。 |
log.index.interval.bytes | 默认 4kb,kafka 里面每当写入了 4kb 大小的日志(.log),然后就往 index 文件里面记录一个索引。 |
log.retention.hours | Kafka 中数据保存的时间,默认 7 天。 |
log.retention.minutes | Kafka 中数据保存的时间,分钟级别,默认关闭。 |
log.retention.ms | Kafka 中数据保存的时间,毫秒级别,默认关闭。 |
log.retention.check.interval.ms | 检查数据是否保存超时的间隔,默认是 5 分钟。 |
log.retention.bytes | 默认等于-1,表示无穷大。超过设置的所有日志总大小,删除最早的 segment。 |
log.cleanup.policy | 默认是 delete,表示所有数据启用删除策略;如果设置值为 compact,表示所有数据启用压缩策略。 |
num.io.threads | 默认是 8。负责写磁盘的线程数。整个参数值要占总核数的 50%。 |
num.replica.fetchers | 副本拉取线程数,这个参数占总核数的 50%的 1/3 |
num.network.threads | 默认是 3。数据传输线程数,这个参数占总核数的50%的 2/3 。 |
log.flush.interval.messages | 强制页缓存刷写到磁盘的条数,默认是 long 的最大值,9223372036854775807。一般不建议修改,交给系统自己管理。 |
log.flush.interval.ms | 每隔多久,刷数据到磁盘,默认是 null。一般不建议修改,交给系统自己管理。 |