跳至主要內容

一、课程目标

大约 96 分钟

img

一、课程目标

课程目标

  • 系统了解Spring Batch批处理

  • 项目中能熟练使用Spring Batch批处理

课程内容

前置知识

  • Java基础

  • Maven

  • Spring SpringMVC SpringBoot

  • MyBatis

适合人群

  • 想学习的所有人

二、Spring Batch简介

2.1 何为批处理?

何为批处理,大白话:就是将数据分批次进行处理的过程。比如:银行对账逻辑,跨系统数据同步等。

常规的批处理操作步骤:系统A从数据库中导出数据到文件,系统B读取文件数据并写入到数据库

image-20220914225838654

典型批处理特点:

  • 自动执行,根据系统设定的工作步骤自动完成

  • 数据量大,少则百万,多则上千万甚至上亿。(如果是10亿,100亿那只能上大数据了)

  • 定时执行,比如:每天,每周,每月执行。

2.2 Spring Batch了解

官网介绍:https://docs.spring.io/spring-batch/docs/current/reference/html/spring-batch-intro.html#spring-batch-intro

这里挑重点讲下:

  • Sping Batch 是一个轻量级的、完善的的批处理框架,旨在帮助企业建立健壮、高效的批处理应用。

  • Spring Batch 是Spring的一个子项目,基于Spring框架为基础的开发的框架

  • Spring Batch 提供大量可重用的组件,比如:日志,追踪,事务,任务作业统计,任务重启,跳过,重复,资源管理等

  • Spring Batch 是一个批处理应用框架,不提供调度框架,如果需要定时处理需要额外引入-调度框架,比如: Quartz

2.3 Spring Batch 优势

Spring Batch 框架通过提供丰富的开箱即用的组件和高可靠性、高扩展性的能力,使得开发批处理应用的人员专注于业务处理,提高处理应用的开发能力。下面就是使用Spring Batch后能获取到优势:

  • 丰富的开箱即用组件

  • 面向Chunk的处理

  • 事务管理能力

  • 元数据管理

  • 易监控的批处理应用

  • 丰富的流程定义

  • 健壮的批处理应用

  • 易扩展的批处理应用

  • 复用企业现有的IT代码

2.4 Spring Batch 架构

Spring Batch 核心架构分三层:应用层,核心层,基础架构层。

image-20220915131050999

Application:应用层,包含所有的批处理作业,程序员自定义代码实现逻辑。

Batch Core:核心层,包含Spring Batch启动和控制所需要的核心类,比如:JobLauncher, Job,Step等。

Batch Infrastructure:基础架构层,提供通用的读,写与服务处理。

三层体系使得Spring Batch 架构可以在不同层面进行扩展,避免影响,实现高内聚低耦合设计。

三、入门案例

3.1 批量处理流程

前面对Spring Batch 有大体了解之后,那么开始写个案例玩一下。

开始前,先了解一下Spring Batch程序运行大纲:

image-20220915132446839

JobLauncher:作业调度器,作业启动主要入口。

Job:作业,需要执行的任务逻辑,

Step:作业步骤,一个Job作业由1个或者多个Step组成,完成所有Step操作,一个完整Job才算执行结束。

ItemReader:Step步骤执行过程中数据输入。可以从数据源(文件系统,数据库,队列等)中读取Item(数据记录)。

ItemWriter:Step步骤执行过程中数据输出,将Item(数据记录)写入数据源(文件系统,数据库,队列等)。

ItemProcessor:Item数据加工逻辑(输入),比如:数据清洗,数据转换,数据过滤,数据校验等

JobRepository: 保存Job或者检索Job的信息。SpringBatch需要持久化Job(可以选择数据库/内存),JobRepository就是持久化的接口

3.2 入门案例-H2版(内存)

需求:打印一个hello spring batch!不带读/写/处理

步骤1:导入依赖

<parent>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-parent</artifactId>
    <version>2.7.3</version>
    <relativePath/>
</parent>
<dependencies>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-batch</artifactId>
    </dependency>
    <dependency>
        <groupId>org.projectlombok</groupId>
        <artifactId>lombok</artifactId>
    </dependency>

	<!--内存版-->
    <dependency>
        <groupId>com.h2database</groupId>
        <artifactId>h2</artifactId>
        <scope>runtime</scope>
    </dependency>

    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-test</artifactId>
    </dependency>

</dependencies>

其中的h2是一个嵌入式内存数据库,后续可以使用MySQL替换

步骤2:创建测试方法

package com.langfeiyes.batch._01_hello;

import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.StepContribution;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.core.launch.JobLauncher;
import org.springframework.batch.core.scope.context.ChunkContext;
import org.springframework.batch.core.step.tasklet.Tasklet;
import org.springframework.batch.repeat.RepeatStatus;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;

@SpringBootApplication
@EnableBatchProcessing
public class HelloJob {
    //job调度器
    @Autowired
    private JobLauncher jobLauncher;
    //job构造器工厂
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    //step构造器工厂
    @Autowired
    private StepBuilderFactory stepBuilderFactory;
    //任务-step执行逻辑由tasklet完成
    @Bean
    public Tasklet tasklet(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {
                System.out.println("Hello SpringBatch....");
                return RepeatStatus.FINISHED;
            }
        };
    }
    //作业步骤-不带读/写/处理
    @Bean
    public Step step1(){
        return stepBuilderFactory.get("step1")
                .tasklet(tasklet())
                .build();
    }
    //定义作业
    @Bean
    public Job job(){
        return jobBuilderFactory.get("hello-job")
                .start(step1())
                .build();
    }
    public static void main(String[] args) {
        SpringApplication.run(HelloJob.class, args);
    }

}

步骤3:分析

例子是一个简单的SpringBatch 入门案例,使用了最简单的一种步骤处理模型:Tasklet模型,step1中没有带上读/写/处理逻辑,只有简单打印操作,后续随学习深入,我们再讲解更复杂化模型。

3.3 入门案例-MySQL版

MySQL跟上面的h2一样,区别在连接数据库不一致。

步骤1:在H2版本基础上导入MySQL依赖

<!-- <dependency>
    <groupId>com.h2database</groupId>
    <artifactId>h2</artifactId>
    <scope>runtime</scope>
</dependency> -->

<dependency>
    <groupId>mysql</groupId>
    <artifactId>mysql-connector-java</artifactId>
    <version>8.0.12</version>
</dependency>

步骤2:配置数据库四要素与初始化SQL脚本

spring:
  datasource:
    username: root
    password: admin
    url: jdbc:mysql://127.0.0.1:3306/springbatch?serverTimezone=GMT%2B8&useSSL=false&allowPublicKeyRetrieval=true
    driver-class-name: com.mysql.cj.jdbc.Driver
    # 初始化数据库,文件在依赖jar包中
  sql:
    init:
      schema-locations: classpath:org/springframework/batch/core/schema-mysql.sql
      mode: always
      #mode: never

这里要注意, sql.init.model 第一次启动为always, 后面启动需要改为never,否则每次执行SQL都会异常。

第一次启动会自动执行指定的脚本,后续不需要再初始化

image-20220919221902905

步骤3:测试

跟H2版一样。

四、入门案例解析

1>@EnableBatchProcessing

批处理启动注解,要求贴配置类或者启动类上

@SpringBootApplication
@EnableBatchProcessing
public class HelloJob {
    ...
}

贴上@EnableBatchProcessing注解后,SpringBoot会自动加载JobLauncher JobBuilderFactory StepBuilderFactory 类并创建对象交给容器管理,要使用时,直接@Autowired即可

//job调度器
@Autowired
private JobLauncher jobLauncher;
//job构造器工厂
@Autowired
private JobBuilderFactory jobBuilderFactory;
//step构造器工厂
@Autowired
private StepBuilderFactory stepBuilderFactory;

2>配置数据库四要素

批处理允许重复执行,异常重试,此时需要保存批处理状态与数据,Spring Batch 将数据缓存在H2内存中或者缓存在指定数据库中。入门案例如果要保存在MySQL中,所以需要配置数据库四要素。

3>创建Tasklet对象

//任务-step执行逻辑由tasklet完成
@Bean
public Tasklet tasklet(){
    return new Tasklet() {
        @Override
        public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {
            System.out.println("Hello SpringBatch....");
            return RepeatStatus.FINISHED;
        }
    };
}

Tasklet负责批处理step步骤中具体业务执行,它是一个接口,有且只有一个execute方法,用于定制step执行逻辑。

public interface Tasklet {
	RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception;
}

execute方法返回值是一个状态枚举类:RepeatStatus,里面有可继续执行态与已经完成态

public enum RepeatStatus {
	/**
	 * 可继续执行的-tasklet返回这个状态会进入死循环
	 */
	CONTINUABLE(true), 
	/**
	 * 已经完成态
	 */
	FINISHED(false);
    ....
}

4>创建Step对象

//作业步骤-不带读/写/处理
@Bean
public Step step1(){
    return stepBuilderFactory.get("step1")
        .tasklet(tasklet())
        .build();
}

Job作业执行靠Step步骤执行,入门案例选用最简单的Tasklet模式,后续再讲Chunk块处理模式。

5>创建Job并执行Job

//定义作业
@Bean
public Job job(){
    return jobBuilderFactory.get("hello-job")
        .start(step1())
        .build();
}

创建Job对象交给容器管理,当springboot启动之后,会自动去从容器中加载Job对象,并将Job对象交给JobLauncherApplicationRunner类,再借助JobLauncher类实现job执行。

验证过程;

打断点,debug模式启动

image-20221130145001348

SpringApplication类run方法

image-20221130145052497

image-20221130145151076

image-20221130145402058

JobLauncherApplicationRunner类

image-20221130145444033

image-20221130145514599

image-20221130145601076

image-20221130145621098

JobLauncher接口--实现类:SimpleJobLauncher

image-20221130145748548

五、作业对象 Job

5.1 作业介绍

5.1.1 作业定义

Job作业可以简单理解为一段业务流程的实现,可以根据业务逻辑拆分一个或者多个逻辑块(step),然后业务逻辑顺序,逐一执行。

所以作业可以定义为:能从头到尾独立执行的有序的步骤(Step)列表。

  • 有序的步骤列表

    一次作业由不同的步骤组成,这些步骤顺序是有意义的,如果不按照顺序执行,会引起逻辑混乱,比如购物结算,先点结算,再支付,最后物流,如果反过来那就乱套了,作业也是这么一回事。

  • 从头到尾

    一次作业步骤固定了,在没有外部交互情况下,会从头到尾执行,前一个步骤做完才会到后一个步骤执行,不允许随意跳转,但是可以按照一定逻辑跳转。

  • 独立

    每一个批处理作业都应该不受外部依赖影响情况下执行。

看回这幅图,批处理作业Job是由一组步骤Step对象组成,每一个作业都有自己名称,可以定义Step执行顺序。

image-20220915132446839

5.1.2 作业代码设计

前面定义讲了作业执行是相互独立的,代码该怎么设计才能保证每次作业独立的性呢?

答案是:Job instance(作业实例) 与 Job Execution(作业执行对象)

Job instance(作业实例)

当作业运行时,会创建一个Job Instance(作业实例),它代表作业的一次逻辑运行,可通过作业名称与作业标识参数进行区分。

比如一个业务需求: 每天定期数据同步,作业名称-daily-sync-job 作业标记参数-当天时间

Job Execution(作业执行对象)

当作业运行时,也会创建一个Job Execution(作业执行器),负责记录Job执行情况(比如:开始执行时间,结束时间,处理状态等)。

三者间的关系

那为啥会出现上面架构设计呢?原因:批处理执行过程中可能出现两种情况:

  • 一种是一次成功

    仅一次就成从头到尾正常执行完毕,在数据库中会记录一条Job Instance 信息, 跟一条 Job Execution 信息

  • 另外一种异常执行

    在执行过程因异常导致作业结束,在数据库中会记录一条Job Instance 信息, 跟一条Job Execution 信息。如果此时使用相同识别参数再次启动作业,那么数据库中不会多一条Job Instance 信息, 但是会多了一条Job Execution 信息,这就意味中任务重复执行了。刚刚说每天批处理任务案例,如果当天执行出异常,那么人工干预修复之后,可以再次执行。

最后来个总结:

Job Instance = Job名称 + 识别参数

Job Instance 一次执行创建一个 Job Execution对象

完整的一次Job Instance 执行可能创建一个Job Execution对象,也可能创建多个Job Execution对象

5.2 作业配置

再看回入门案例

package com.langfeiyes.batch._01_hello;

import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.StepContribution;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.core.launch.JobLauncher;
import org.springframework.batch.core.scope.context.ChunkContext;
import org.springframework.batch.core.step.tasklet.Tasklet;
import org.springframework.batch.repeat.RepeatStatus;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;

@SpringBootApplication
@EnableBatchProcessing
public class HelloJob {
    //job构造器工厂
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    //step构造器工厂
    @Autowired
    private StepBuilderFactory stepBuilderFactory;
    //任务-step执行逻辑由tasklet完成
    @Bean
    public Tasklet tasklet(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {
                System.out.println("Hello SpringBatch....");
                return RepeatStatus.FINISHED;
            }
        };
    }
    //作业步骤-不带读/写/处理
    @Bean
    public Step step1(){
        return stepBuilderFactory.get("step1")
                .tasklet(tasklet())
                .build();
    }
    //定义作业
    @Bean
    public Job job(){
        return jobBuilderFactory.get("hello-job")
                .start(step1())
                .build();
    }
    
    public static void main(String[] args) {
        SpringApplication.run(HelloJob.class, args);
    }

}

在启动类中贴上@EnableBatchProcessing注解,SpringBoot会自动听JobLauncher JobBuilderFactory StepBuilderFactory 对象,分别用于执行Jog,创建Job,创建Step逻辑。有了这些逻辑,Job批处理就剩下组装了。

5.3 作业参数

5.3.1 JobParameters

前面提到,作业的启动条件是作业名称 + 识别参数,Spring Batch使用JobParameters类来封装了所有传给作业参数。

我们看下JobParameters 源码

public class JobParameters implements Serializable {

	private final Map<String,JobParameter> parameters;

	public JobParameters() {
		this.parameters = new LinkedHashMap<>();
	}

	public JobParameters(Map<String,JobParameter> parameters) {
		this.parameters = new LinkedHashMap<>(parameters);
	}
    .....
}

image-20221127174012352

从上面代码/截图来看,JobParameters 类底层维护了Map<String,JobParameter>,是一个Map集合的封装器,提供了不同类型的get操作。

5.3.2 作业参数设置

还记得Spring Batch 入门案例吗,当初debug时候看到Job作业最终是调用时 **JobLauncher **(job启动器)接口run方法启动。

看下源码:JobLauncher

public interface JobLauncher {
	public JobExecution run(Job job, JobParameters jobParameters) throws JobExecutionAlreadyRunningException,
			JobRestartException, JobInstanceAlreadyCompleteException, JobParametersInvalidException;

}

在JobLauncher 启动器执行run方法时,直接传入即可。

jobLauncher.run(job, params);

那我们使用SpringBoot 方式启动Spring Batch该怎么传值呢?

1>定义ParamJob类,准备好要执行的job

package com.langfeiyes.batch._02_params;

import org.springframework.batch.core.*;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepScope;
import org.springframework.batch.core.scope.context.ChunkContext;
import org.springframework.batch.core.step.tasklet.Tasklet;
import org.springframework.batch.repeat.RepeatStatus;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;


@SpringBootApplication
@EnableBatchProcessing
public class ParamJob {
    //job构造器工厂
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    //step构造器工厂
    @Autowired
    private StepBuilderFactory stepBuilderFactory;

    @Bean
    public Tasklet tasklet(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {
                System.out.println("param SpringBatch....");
                return RepeatStatus.FINISHED;
            }
        };
    }
    @Bean
    public Step  step1(){
        return  stepBuilderFactory.get("step1")
                .tasklet(tasklet())
                .build();
    }
    @Bean
    public Job job(){
        return jobBuilderFactory.get("param-job")
                .start(step1())
                .build();
    }
    public static void main(String[] args) {
        SpringApplication.run(HelloJob.class, args);
    }
}

2>使用idea的命令传值的方式设置job作业参数

image-20221130154519119

注意:如果不想这么麻烦,其实也可以,先空参数执行一次,然后指定参数后再执行。

点击绿色按钮,启动SpringBoot程序,作业运行之后,会在batch_job_execution_params 增加一条记录,用于区分唯一的Job Instance实例

image-20221127175249374

注意:如果不改动JobParameters 参数内容,再执行一次批处理,会直接报错。

image-20221127175635802

原因:Spring Batch 相同Job名与相同标识参数只能成功执行一次。

5.3.3 作业参数获取

当将作业参数传入到作业流程,该如何获取呢?

image-20221130154813539

Spring Batch 提供了2种方案:

方案1:使用ChunkContext类

ParamJob类中tasklet写法

@Bean
public Tasklet tasklet(){
    return new Tasklet() {
        @Override
        public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {
            Map<String, Object> parameters = chunkContext.getStepContext().getJobParameters();
            System.out.println("params---name:" + parameters.get("name"));
            return RepeatStatus.FINISHED;
        }
    };
}

注意:job名:param-job job参数:name=dafei 已经执行了,再执行会报错

所以要么改名字,要么改参数,这里选择改job名字(拷贝一份job实例方法,然后注释掉,修改Job名称)

//    @Bean
//    public Job job(){
//        return jobBuilderFactory.get("param-job")
//                .start(step1())
//                .build();
//    }

    @Bean
    public Job job(){
        return jobBuilderFactory.get("param-chunk-job")
                .start(step1())
                .build();
    }

方案2:使用@Value 延时获取

@StepScope
@Bean
public Tasklet tasklet(@Value("#{jobParameters['name']}")String name){
    return new Tasklet() {
        @Override
        public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {
            System.out.println("params---name:" + name);
            return RepeatStatus.FINISHED;
        }
    };
}

@Bean
public Step  step1(){
    return  stepBuilderFactory.get("step1")
        .tasklet(tasklet(null))
        .build();
}

step1调用tasklet实例方法时不需要传任何参数,Spring Boot 在加载Tasklet Bean实例时会自动注入。

//    @Bean
//    public Job job(){
//        return jobBuilderFactory.get("param-chunk-job")
//                .start(step1())
//                .build();
//    }

@Bean
public Job job(){
    return jobBuilderFactory.get("param-value-job")
        .start(step1())
        .build();
}

这里要注意,必须贴上@StepScope ,表示在启动项目的时候,不加载该Step步骤bean,等step1()被调用时才加载。这就是所谓延时获取。

5.3.4 作业参数校验

当外部传入的参数进入作业时,如何确保参数符合期望呢?使用Spring Batch 的参数校验器:JobParametersValidator 接口。

先来看下JobParametersValidator 接口源码:

public interface JobParametersValidator {
	void validate(@Nullable JobParameters parameters) throws JobParametersInvalidException;
}

JobParametersValidator 接口有且仅有唯一的validate方法,参数为JobParameters,没有返回值。这就意味着不符合参数要求,需要抛出异常来结束步骤。

定制参数校验器

Spring Batch 提供JobParametersValidator参数校验接口,其目的就是让我们通过实现接口方式定制参数校验逻辑。

需求:如果传入作业的参数name值 为null 或者 "" 时报错

public class NameParamValidator  implements JobParametersValidator {
    @Override
    public void validate(JobParameters parameters) throws JobParametersInvalidException {
        String name = parameters.getString("name");

        if(!StringUtils.hasText(name)){
            throw new JobParametersInvalidException("name 参数不能为空");
        }
    }
}

其中的JobParametersInvalidException 异常是Spring Batch 专门提供参数校验失败异常,当然我们也可以自定义或使用其他异常。

package com.langfeiyes.batch._03_param_validator;

import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.StepContribution;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepScope;
import org.springframework.batch.core.scope.context.ChunkContext;
import org.springframework.batch.core.step.tasklet.Tasklet;
import org.springframework.batch.repeat.RepeatStatus;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;

import java.util.Map;

@SpringBootApplication
@EnableBatchProcessing
public class ParamValidatorJob {
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;

    @Bean
    public Tasklet tasklet(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {
                Map<String, Object> parameters = chunkContext.getStepContext().getJobParameters();
                System.out.println("params---name:" + parameters.get("name"));
                return RepeatStatus.FINISHED;
            }
        };
    }

    @Bean
    public Step  step1(){
        return  stepBuilderFactory.get("step1")
                .tasklet(tasklet())
                .build();
    }

    //配置name参数校验器
    @Bean
    public NameParamValidator validator(){
        return new NameParamValidator();
    }

    @Bean
    public Job job(){
        return jobBuilderFactory.get("name-param-validator-job")
                .start(step1())
                .validator(validator())  //参数校验器
                .build();
    }
    public static void main(String[] args) {
        SpringApplication.run(ParamValidatorJob.class, args);
    }
}

新定义validator()实例方法,将定制的参数解析器加到Spring容器中,修改job()实例方法,加上.validator(validator()) 校验逻辑。

第一次启动时,没有传任何参数

String name = parameters.getString("name");

name为null,直接报错

image-20221129123520596

加上name=dafei参数之后,正常执行

image-20221130161208827

默认参数校验器

除去上面的定制参数校验器外,Spring Batch 也提供2个默认参数校验器:DefaultJobParametersValidator(默认参数校验器) 跟 CompositeJobParametersValidator(组合参数校验器)。

DefaultJobParametersValidator参数校验器

public class DefaultJobParametersValidator implements JobParametersValidator, InitializingBean {
	private Collection<String> requiredKeys;
	private Collection<String> optionalKeys;
    ....
}   

默认的参数校验器它功能相对简单,维护2个key集合requiredKeys 跟 optionalKeys

  • requiredKeys 是一个集合,表示作业参数jobParameters中必须包含集合中指定的keys
  • optionalKeys 也是一个集合,该集合中的key 是可选参数

需求:如果作业参数没有name参数报错,age参数可有可无

package com.langfeiyes.batch._03_param_validator;

import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.StepContribution;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepScope;
import org.springframework.batch.core.job.DefaultJobParametersValidator;
import org.springframework.batch.core.scope.context.ChunkContext;
import org.springframework.batch.core.step.tasklet.Tasklet;
import org.springframework.batch.repeat.RepeatStatus;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;

import java.util.Map;

@SpringBootApplication
@EnableBatchProcessing
public class ParamValidatorJob {
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;

    @Bean
    public Tasklet tasklet(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {
                Map<String, Object> parameters = chunkContext.getStepContext().getJobParameters();
                System.out.println("params---name:" + parameters.get("name"));
                System.out.println("params---age:" + parameters.get("age"));
                return RepeatStatus.FINISHED;
            }
        };
    }

    @Bean
    public Step  step1(){
        return  stepBuilderFactory.get("step1")
                .tasklet(tasklet())
                .build();
    }

    //配置name参数校验器
    @Bean
    public NameParamValidator validator(){
        return new NameParamValidator();
    }

     //配置默认参数校验器
    @Bean
    public DefaultJobParametersValidator defaultValidator(){
        DefaultJobParametersValidator defaultValidator = new DefaultJobParametersValidator();
        defaultValidator.setRequiredKeys(new String[]{"name"});  //必填
        defaultValidator.setOptionalKeys(new String[]{"age"});   //可选
        return defaultValidator;
    }

    @Bean
    public Job job(){
        return jobBuilderFactory.get("default-param-validator-job")
                .start(step1())
                //.validator(validator())  //参数校验器
                .validator(defaultValidator())  //默认参数校验器
                .build();
    }
    public static void main(String[] args) {
        SpringApplication.run(ParamValidatorJob.class, args);
    }
}

新定义defaultValidator() 实例方法,将默认参数解析器加到Spring容器中,修改job实例方法,加上**.validator(defaultValidator())。**

右键启动,不填name 跟 age 参数,直接报错

image-20221129123650952

如果填上name参数,即使不填age参数,可以通过,原因是age是可选的。

image-20221130162132720

组合参数校验器

CompositeJobParametersValidator 组合参数校验器,顾名思义就是将多个参数校验器组合在一起。

看源码,大体能看出该校验器逻辑

public class CompositeJobParametersValidator implements JobParametersValidator, InitializingBean {

	private List<JobParametersValidator> validators;

	@Override
	public void validate(@Nullable JobParameters parameters) throws JobParametersInvalidException {
		for (JobParametersValidator validator : validators) {
			validator.validate(parameters);
		}
	}
	
	public void setValidators(List<JobParametersValidator> validators) {
		this.validators = validators;
	}

	@Override
	public void afterPropertiesSet() throws Exception {
		Assert.notNull(validators, "The 'validators' may not be null");
		Assert.notEmpty(validators, "The 'validators' may not be empty");
	}
}

底层维护一个validators 集合,校验时调用validate 方法,依次执行校验器集合中校验器方法。另外,多了一个afterPropertiesSet方法,用于校验validators 集合中的校验器是否为null。

需求:要求步骤中必须有name属性,并且不能为空

分析:必须有,使用DefaultJobParametersValidator 参数校验器, 不能为null,使用指定定义的NameParamValidator参数校验器

package com.langfeiyes.batch._03_param_validator;

import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.StepContribution;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepScope;
import org.springframework.batch.core.job.CompositeJobParametersValidator;
import org.springframework.batch.core.job.DefaultJobParametersValidator;
import org.springframework.batch.core.scope.context.ChunkContext;
import org.springframework.batch.core.step.tasklet.Tasklet;
import org.springframework.batch.repeat.RepeatStatus;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;

import java.util.Arrays;
import java.util.Map;

@SpringBootApplication
@EnableBatchProcessing
public class ParamValidatorJob {
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;

    @Bean
    public Tasklet tasklet(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {
                Map<String, Object> parameters = chunkContext.getStepContext().getJobParameters();
                System.out.println("params---name:" + parameters.get("name"));
                System.out.println("params---age:" + parameters.get("age"));
                return RepeatStatus.FINISHED;
            }
        };
    }

    @Bean
    public Step  step1(){
        return  stepBuilderFactory.get("step1")
                .tasklet(tasklet())
                .build();
    }

    //配置name参数校验器
    @Bean
    public NameParamValidator validator(){
        return new NameParamValidator();
    }

     //配置默认参数校验器
    @Bean
    public DefaultJobParametersValidator defaultValidator(){
        DefaultJobParametersValidator defaultValidator = new DefaultJobParametersValidator();
        defaultValidator.setRequiredKeys(new String[]{"name"});  //必填
        defaultValidator.setOptionalKeys(new String[]{"age"});   //可选
        return defaultValidator;
    }

    //配置组合参数校验器
    @Bean
    public CompositeJobParametersValidator compositeValidator(){

        DefaultJobParametersValidator defaultValidator = new DefaultJobParametersValidator();
        defaultValidator.setRequiredKeys(new String[]{"name"});  //name必填
        defaultValidator.setOptionalKeys(new String[]{"age"});   //age可选

        NameParamValidator nameParamValidator = new NameParamValidator();  //name 不能为空

        CompositeJobParametersValidator compositeValidator = new CompositeJobParametersValidator();
        //按照传入的顺序,先执行defaultValidator 后执行nameParamValidator
        compositeValidator.setValidators(Arrays.asList(defaultValidator, nameParamValidator));

        try {
            compositeValidator.afterPropertiesSet();  //判断校验器是否为null
        } catch (Exception e) {
            e.printStackTrace();
        }

        return compositeValidator;
    }

    @Bean
    public Job job(){
        return jobBuilderFactory.get("composite-param-validator-job")
                .start(step1())
                //.validator(validator())  //参数校验器
                //.validator(defaultValidator())  //默认参数校验器
                .validator(compositeValidator())  //组合参数校验器
                .build();
    }
    public static void main(String[] args) {
        SpringApplication.run(ParamValidatorJob.class, args);
    }
}

新定义compositeValidator() 实例方法,将组合参数解析器加到spring容器中,修改job()实例方法,加上**.validator(compositeValidator())。**

右键启动,不填name参数,测试报错。如果放开name参数,传null值,一样报错。

image-20221130162945870

5.3.5 作业增量参数

不知道大家发现了没有,每次运行作业时,都改动作业名字,或者改动作业的参数,原因是作业启动有限制:相同标识参数与相同作业名的作业,只能成功运行一次。那如果想每次启动,又不想改动标识参数跟作业名怎么办呢?答案是:使用JobParametersIncrementer (作业参数增量器)

看下源码,了解一下原理

public interface JobParametersIncrementer {
	JobParameters getNext(@Nullable JobParameters parameters);

}

JobParametersIncrementer 增量器是一个接口,里面只有getNext方法,参数是JobParameters 返回值也是JobParameters。通过这个getNext方法,在作业启动时我们可以给JobParameters 添加或者修改参数。简单理解就是让标识参数每次都变动

作业递增run.id参数

Spring Batch 提供一个run.id自增参数增量器:RunIdIncrementer,每次启动时,里面维护名为run.id 标识参数,每次启动让其自增 1。

看下源码:

public class RunIdIncrementer implements JobParametersIncrementer {

	private static String RUN_ID_KEY = "run.id";

	private String key = RUN_ID_KEY;

	public void setKey(String key) {
		this.key = key;
	}

	@Override
	public JobParameters getNext(@Nullable JobParameters parameters) {

		JobParameters params = (parameters == null) ? new JobParameters() : parameters;
		JobParameter runIdParameter = params.getParameters().get(this.key);
		long id = 1;
		if (runIdParameter != null) {
			try {
				id = Long.parseLong(runIdParameter.getValue().toString()) + 1;
			}
			catch (NumberFormatException exception) {
				throw new IllegalArgumentException("Invalid value for parameter "
						+ this.key, exception);
			}
		}
		return new JobParametersBuilder(params).addLong(this.key, id).toJobParameters();
	}

}

核心getNext方法,在JobParameters 对象维护一个run.id,每次作业启动时,都调用getNext方法获取JobParameters,保证其 run.id 参数能自增1

具体用法:

package com.langfeiyes.batch._04_param_incr;

import com.langfeiyes.batch._03_param_validator.NameParamValidator;
import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.StepContribution;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepScope;
import org.springframework.batch.core.job.CompositeJobParametersValidator;
import org.springframework.batch.core.job.DefaultJobParametersValidator;
import org.springframework.batch.core.launch.support.RunIdIncrementer;
import org.springframework.batch.core.scope.context.ChunkContext;
import org.springframework.batch.core.step.tasklet.Tasklet;
import org.springframework.batch.repeat.RepeatStatus;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;

import java.util.Arrays;
import java.util.Map;

@SpringBootApplication
@EnableBatchProcessing
public class IncrementParamJob {
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;

    @Bean
    public Tasklet tasklet(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {
                Map<String, Object> parameters = chunkContext.getStepContext().getJobParameters();
                System.out.println("params---run.id:" + parameters.get("run.id"));
                return RepeatStatus.FINISHED;
            }
        };
    }

    @Bean
    public Step  step1(){
        return  stepBuilderFactory.get("step1")
                .tasklet(tasklet())
                .build();
    }

    @Bean
    public Job job(){
        return jobBuilderFactory.get("incr-params-job")
                .start(step1())
                .incrementer(new RunIdIncrementer())  //参数增量器(run.id自增)
                .build();
    }
    public static void main(String[] args) {
        SpringApplication.run(IncrementParamJob.class, args);
    }
}

修改tasklet()方法,获取run.id参数,修改job实例方法,加上**.incrementer(new RunIdIncrementer())** ,保证参数能自增。

连续执行3次,观察:batch_job_execution_params

image-20221130165010412

其中的run.id参数值一直增加,其中再多遍也没啥问题。

作业时间戳参数

run.id 作为标识参数貌似没有具体业务意义,如果将时间戳作为标识参数那就不一样了,比如这种运用场景:每日任务批处理,这时就需要记录每天的执行时间了。那该怎么实现呢?

Spring Batch 中没有现成时间戳增量器,需要自己定义

//时间戳作业参数增量器
public class DailyTimestampParamIncrementer implements JobParametersIncrementer {
    @Override
    public JobParameters getNext(JobParameters parameters) {
        return new JobParametersBuilder(parameters)
                .addLong("daily", new Date().getTime())  //添加时间戳
                .toJobParameters();
    }
}

定义一个标识参数:daily,记录当前时间戳

package com.langfeiyes.batch._04_param_incr;

import com.langfeiyes.batch._03_param_validator.NameParamValidator;
import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.StepContribution;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepScope;
import org.springframework.batch.core.job.CompositeJobParametersValidator;
import org.springframework.batch.core.job.DefaultJobParametersValidator;
import org.springframework.batch.core.launch.support.RunIdIncrementer;
import org.springframework.batch.core.scope.context.ChunkContext;
import org.springframework.batch.core.step.tasklet.Tasklet;
import org.springframework.batch.repeat.RepeatStatus;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;

import java.util.Arrays;
import java.util.Map;

@SpringBootApplication
@EnableBatchProcessing
public class IncrementParamJob {
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;

    @Bean
    public Tasklet tasklet(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {
                Map<String, Object> parameters = chunkContext.getStepContext().getJobParameters();
                System.out.println("params---daily:" + parameters.get("daily"));
                return RepeatStatus.FINISHED;
            }
        };
    }

    //时间戳增量器
    @Bean
    public DailyTimestampParamIncrementer dailyTimestampParamIncrementer(){
        return new DailyTimestampParamIncrementer();
    }


    @Bean
    public Step  step1(){
        return  stepBuilderFactory.get("step1")
                .tasklet(tasklet())
                .build();
    }

    @Bean
    public Job job(){
        return jobBuilderFactory.get("incr-params-job")
                .start(step1())
                //.incrementer(new RunIdIncrementer())  //参数增量器(run.id自增)
                .incrementer(dailyTimestampParamIncrementer())  //时间戳增量器
                .build();
    }
    public static void main(String[] args) {
        SpringApplication.run(IncrementParamJob.class, args);
    }
}

定义实例方法dailyTimestampParamIncrementer()将自定义时间戳增量器添加Spring容器中,修改job()实例方法,添加.incrementer(dailyTimestampParamIncrementer()) 增量器,修改tasklet() 方法,获取 daily参数。

连续执行3次,查看batch_job_execution_params

image-20221130192217216

很明显可以看出daily在变化,而run.id 没有动,是3,为啥?因为**.incrementer(new RunIdIncrementer())** 被注释掉了。

5.4 作业监听器

作业监听器:用于监听作业的执行过程逻辑。在作业执行前,执行后2个时间点嵌入业务逻辑。

  • 执行前:一般用于初始化操作, 作业执行前需要着手准备工作,比如:各种连接建立,线程池初始化等。
  • 执行后:业务执行完后,需要做各种清理动作,比如释放资源等。

Spring Batch 使用JobExecutionListener 接口 实现作业监听。

public interface JobExecutionListener {
    //作业执行前
	void beforeJob(JobExecution jobExecution);
    //作业执行后
	void afterJob(JobExecution jobExecution);
}

需求:记录作业执行前,执行中,与执行后的状态

方式一:接口方式

//作业状态--接口方式
public class JobStateListener  implements JobExecutionListener {
    //作业执行前
    @Override
    public void beforeJob(JobExecution jobExecution) {
        System.err.println("执行前-status:" + jobExecution.getStatus());
    }
    //作业执行后
    @Override
    public void afterJob(JobExecution jobExecution) {
        System.err.println("执行后-status:" + jobExecution.getStatus());
    }
}

定义JobStateListener 实现JobExecutionListener 接口,重写beforeJob,afterJob 2个方法。

import org.springframework.batch.core.Job;
import org.springframework.batch.core.JobExecution;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.StepContribution;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.core.scope.context.ChunkContext;
import org.springframework.batch.core.step.tasklet.Tasklet;
import org.springframework.batch.repeat.RepeatStatus;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;

@SpringBootApplication
@EnableBatchProcessing
public class StatusListenerJob {
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;

    @Bean
    public Tasklet tasklet(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {
                JobExecution jobExecution = contribution.getStepExecution().getJobExecution();
                System.err.println("执行中-status:" + jobExecution.getStatus());
                return RepeatStatus.FINISHED;
            }
        };
    }

    //状态监听器
    @Bean
    public JobStateListener jobStateListener(){
        return new JobStateListener();
    }

    @Bean
    public Step  step1(){
        return  stepBuilderFactory.get("step1")
                .tasklet(tasklet())
                .build();
    }
    @Bean
    public Job job(){
        return jobBuilderFactory.get("status-listener-job")
                .start(step1())
                .listener(jobStateListener())  //设置状态监听器
                .build();
    }
    public static void main(String[] args) {
        SpringApplication.run(StatusListenerJob.class, args);
    }
}

新加jobStateListener()实例方法创建对象交个Spring容器管理,修改job()方法,添加.listener(jobStateListener()) 状态监听器,直接执行,观察结果

image-20221130200436654

方式二:注解方式

除去上面通过实现接口方式实现监听之外,也可以使用**@BeforeJob @AfterJob** 2个注解实现

//作业状态--注解方式
public class JobStateAnnoListener  {
    @BeforeJob
    public void beforeJob(JobExecution jobExecution) {
        System.err.println("执行前-anno-status:" + jobExecution.getStatus());
    }

    @AfterJob
    public void afterJob(JobExecution jobExecution) {
        System.err.println("执行后-anno-status:" + jobExecution.getStatus());
    }
}
import org.springframework.batch.core.Job;
import org.springframework.batch.core.JobExecution;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.StepContribution;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.core.launch.support.RunIdIncrementer;
import org.springframework.batch.core.listener.JobListenerFactoryBean;
import org.springframework.batch.core.scope.context.ChunkContext;
import org.springframework.batch.core.step.tasklet.Tasklet;
import org.springframework.batch.repeat.RepeatStatus;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;

@SpringBootApplication
@EnableBatchProcessing
public class StatusListenerJob {
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;

    @Bean
    public Tasklet tasklet(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {
                JobExecution jobExecution = contribution.getStepExecution().getJobExecution();
                System.err.println("执行中-anno-status:" + jobExecution.getStatus());
                return RepeatStatus.FINISHED;
            }
        };
    }

    //状态监听器
/*    @Bean
    public JobStateListener jobStateListener(){
        return new JobStateListener();
    }*/

    @Bean
    public Step  step1(){
        return  stepBuilderFactory.get("step1")
                .tasklet(tasklet())
                .build();
    }
    @Bean
    public Job job(){
        return jobBuilderFactory.get("status-listener-job1")
                .start(step1())
                .incrementer(new RunIdIncrementer())
                //.listener(jobStateListener())  //设置状态监听器
                .listener(JobListenerFactoryBean.getListener(new JobStateAnnoListener()))
                .build();
    }
    public static void main(String[] args) {
        SpringApplication.run(StatusListenerJob.class, args);
    }
}

修改job()方法,添加**.listener(JobListenerFactoryBean.getListener(new JobStateAnnoListener()))**状态监听器,直接执行,观察结果

image-20221130201229943

不需要纠结那一长串方法是啥逻辑,只需要知道它能将指定监听器对象加载到spring容器中。

5.5 执行上下文

5.5.1 作业与步骤上下文

语文中有个词叫上下文,比如:联系上下文解读一下作者所有表达意思。从这看上下文有环境,语境,氛围的意思。类比到编程,业内也喜欢使用Context表示上下文。比如Spring容器: SpringApplicationContext 。有上下文这个铺垫之后,我们来看下Spring Batch的上下文。

Spring Batch 有2个比较重要的上下文:

  • JobContext

    JobContext 绑定 JobExecution 执行对象为Job作业执行提供执行环境(上下文)。

    作用:维护JobExecution 对象,实现作业收尾工作,与处理各种作业回调逻辑

  • StepContext

    StepContext 绑定 StepExecution 执行对象为Step步骤执行提供执行环境(上下文)。

    作用:维护StepExecution 对象,实现步骤收尾工作,与处理各种步骤回调逻辑

5.5.2 执行上下文

除了上面讲的JobContext 作业上下文, StepContext 步骤上线下文外,还有Spring Batch还维护另外一个上下文:ExecutionContext 执行上下文,作用是:数据共享

Spring Batch 中 ExecutionContext 分2大类

  • Job ExecutionContext

    作用域:一次作业运行,所有Step步骤间数据共享。

  • Step ExecutionContext:

    作用域:一次步骤运行,单个Step步骤间(ItemReader/ItemProcessor/ItemWrite组件间)数据共享。

Spring Batch 参数传递

5.5.3 作业与步骤执行链

img

5.5.4 作业与步骤引用链

  • 作业线

    Job---JobInstance---JobContext---JobExecution--ExecutionContext

  • 步骤线

    Step--StepContext --StepExecution--ExecutionContext

5.5.5 作业上下文API

JobContext context = JobSynchronizationManager.getContext();
JobExecution jobExecution = context.getJobExecution();
Map<String, Object> jobParameters = context.getJobParameters();
Map<String, Object> jobExecutionContext = context.getJobExecutionContext();

5.5.6 步骤上下文API

ChunkContext chunkContext = xxx;
StepContext stepContext = chunkContext.getStepContext();
StepExecution stepExecution = stepContext.getStepExecution();
Map<String, Object> stepExecutionContext = stepContext.getStepExecutionContext();
Map<String, Object> jobExecutionContext = stepContext.getJobExecutionContext();

5.5.7 执行上下文API

ChunkContext chunkContext = xxx;
//步骤
StepContext stepContext = chunkContext.getStepContext();
StepExecution stepExecution = stepContext.getStepExecution();
ExecutionContext executionContext = stepExecution.getExecutionContext();
executionContext.put("key", "value");
//-------------------------------------------------------------------------
//作业
JobExecution jobExecution = stepExecution.getJobExecution();
ExecutionContext executionContext = jobExecution.getExecutionContext();
executionContext.put("key", "value");

5.5.8 API综合小案例

需求:观察作业ExecutionContext与 步骤ExecutionContext数据共享

分析:

1>定义step1 与step2 2个步骤

2>在step1中设置数据

​ 作业-ExecutionContext 添加: key-step1-job value-step1-job

​ 步骤-ExecutionContext 添加: key-step1-step value-step1-step

3>在step2中打印观察

​ 作业-ExecutionContext 步骤-ExecutionContext

package com.langfeiyes.batch._06_context;

import com.langfeiyes.batch._04_param_incr.DailyTimestampParamIncrementer;
import org.springframework.batch.core.*;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.core.launch.JobLauncher;
import org.springframework.batch.core.launch.support.RunIdIncrementer;
import org.springframework.batch.core.listener.JobListenerFactoryBean;
import org.springframework.batch.core.scope.context.ChunkContext;
import org.springframework.batch.core.scope.context.JobContext;
import org.springframework.batch.core.scope.context.JobSynchronizationManager;
import org.springframework.batch.core.scope.context.StepContext;
import org.springframework.batch.core.step.tasklet.Tasklet;
import org.springframework.batch.item.ExecutionContext;
import org.springframework.batch.repeat.RepeatStatus;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
@SpringBootApplication
@EnableBatchProcessing
public class ExecutionContextJob {
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;

    @Bean
    public Tasklet tasklet1(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {

                //步骤
                ExecutionContext stepEC = chunkContext.getStepContext().getStepExecution().getExecutionContext();
                stepEC.put("key-step1-step","value-step1-step");
                System.out.println("------------------1---------------------------");
                //作业
                ExecutionContext jobEC = chunkContext.getStepContext().getStepExecution().getJobExecution().getExecutionContext();
                jobEC.put("key-step1-job","value-step1-job");

                return RepeatStatus.FINISHED;
            }
        };
    }
    @Bean
    public Tasklet tasklet2(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {

                //步骤
                ExecutionContext stepEC = chunkContext.getStepContext().getStepExecution().getExecutionContext();
                System.err.println(stepEC.get("key-step1-step"));
                System.out.println("------------------2---------------------------");
                //作业
                ExecutionContext jobEC = chunkContext.getStepContext().getStepExecution().getJobExecution().getExecutionContext();
                System.err.println(jobEC.get("key-step1-job"));


                return RepeatStatus.FINISHED;
            }
        };
    }

    @Bean
    public Step  step1(){
        return  stepBuilderFactory.get("step1")
                .tasklet(tasklet1())
                .build();
    }
    @Bean
    public Step  step2(){
        return  stepBuilderFactory.get("step2")
                .tasklet(tasklet2())
                .build();
    }

    @Bean
    public Job job(){
        return jobBuilderFactory.get("execution-context-job")
                .start(step1())
                .next(step2())
                .incrementer(new RunIdIncrementer())
                .build();
    }
    public static void main(String[] args) {
        SpringApplication.run(ExecutionContextJob.class, args);
    }
}

运行结果:

image-20230110012206351

可以看出,在stepContext 设置的参数作用域仅在StepExecution 执行范围有效,而JobContext 设置参数作用与在所有StepExcution 有效,有点局部与全局 的意思。

打开数据库观察表:batch_job_execution_context 跟 batch_step_execution_context 表

JobContext数据保存到:batch_job_execution_context

StepContext数据保存到:batch_step_execution_context

总结:

步骤数据保存在Step ExecutionContext,只能在Step中使用,作业数据保存在Job ExecutionContext,可以在所有Step中共享

六、步骤对象 Step

前面一章节讲完了作业的相关介绍,本章节重点讲解步骤。

6.1 步骤介绍

image-20220915132446839

一般认为步骤是一个独立功能组件,因为它包含了一个工作单元需要的所有内容,比如:输入模块,输出模块,数据处理模块等。这种设计好处在哪?给开发者带来更自由的操作空间。

目前Spring Batch 支持2种步骤处理模式:

  • 简单具于Tasklet 处理模式

    这种模式相对简单,前面讲的都是居于这个模式批处理

    @Bean
    public Tasklet tasklet(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {
                System.out.println("Hello SpringBatch....");
                return RepeatStatus.FINISHED;
            }
        };
    }
    

    只需要实现Tasklet接口,就可以构建一个step代码块。循环执行step逻辑,直到tasklet.execute方法返回RepeatStatus.FINISHED

  • 居于块(chunk)的处理模式

    居于块的步骤一般包含2个或者3个组件:1>ItemReader 2>ItemProcessor(可选) 3>ItemWriter 。 当用上这些组件之后,Spring Batch 会按块处理数据。

6.2 简单Tasklet

学到这,我们写过很多简单Tasklet模式步骤,但是都没有深入了解过,这节就细致分析一下具有Tasklet 步骤使用。

先看下Tasklet源码

public interface Tasklet {
	@Nullable
	RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception;
}

Tasklet 接口有且仅有一个方法:execute,

参数有2个:

StepContribution:步骤信息对象,用于保存当前步骤执行情况信息,核心用法:设置步骤结果状态contribution.setExitStatus(ExitStatus status)

contribution.setExitStatus(ExitStatus.COMPLETED);

ChunkContext:chuck上下文,跟之前学的StepContext JobContext一样,区别是它用于记录chunk块执行场景。通过它可以获取前面2个对象。

返回值1个:

RepeatStatus:当前步骤状态, 它是枚举类,有2个值,一个表示execute方法可以循环执行,一个表示已经执行结束。

public enum RepeatStatus {

	/**
	 * 当前步骤依然可以执行,如果步骤返回该值,会一直循环执行
	 */
	CONTINUABLE(true), 
	/**
	 * 当前步骤结束,可以为成功也可以表示不成,仅代表当前step执行结束了
	 */
	FINISHED(false);
}    

需求:练习上面RepeatStatus状态

@SpringBootApplication
@EnableBatchProcessing
public class SimpleTaskletJob {
    @Autowired
    private JobLauncher jobLauncher;
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;
    @Bean
    public Tasklet tasklet(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {
                System.out.println("------>" + System.currentTimeMillis());
                //return RepeatStatus.CONTINUABLE;  //循环执行
                return RepeatStatus.FINISHED;
            }
        };
    }
    @Bean
    public Step step1(){
        return stepBuilderFactory.get("step1")
                .tasklet(tasklet())
                .build();
    }
    //定义作业
    @Bean
    public Job job(){
        return jobBuilderFactory.get("step-simple-tasklet-job")
                .start(step1())
                .build();
    }
    public static void main(String[] args) {
        SpringApplication.run(SimpleTaskletJob.class, args);
    }

}

6.3 居于块Tasklet

居于块的Tasklet相对简单Tasklet来说,多了3个模块:ItemReader( 读模块), ItemProcessor(处理模块),ItemWriter(写模块), 跟它们名字一样, 一个负责数据读, 一个负责数据加工,一个负责数据写。

结构图:

image-20221203200633106

时序图:

chunk-oriented-processing

需求:简单演示chunk Tasklet使用

ItemReader ItemProcessor ItemWriter 都接口,直接使用匿名内部类方式方便创建

package com.langfeiyes.batch._08_step_chunk_tasklet;

import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.StepContribution;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.core.launch.JobLauncher;
import org.springframework.batch.core.launch.support.RunIdIncrementer;
import org.springframework.batch.core.scope.context.ChunkContext;
import org.springframework.batch.core.step.tasklet.Tasklet;
import org.springframework.batch.item.*;
import org.springframework.batch.repeat.RepeatStatus;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;

import java.util.Arrays;
import java.util.List;

@SpringBootApplication
@EnableBatchProcessing
public class ChunkTaskletJob {
    @Autowired
    private JobLauncher jobLauncher;
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;


    @Bean
    public ItemReader itemReader(){
        return new ItemReader() {
            @Override
            public Object read() throws Exception, UnexpectedInputException, ParseException, NonTransientResourceException {
                System.out.println("-------------read------------");
                return "read-ret";
            }
        };
    }

    @Bean
    public ItemProcessor itemProcessor(){
        return new ItemProcessor() {
            @Override
            public Object process(Object item) throws Exception {
                System.out.println("-------------process------------>" + item);
                return "process-ret->" + item;
            }
        };
    }
    @Bean
    public ItemWriter itemWriter(){
        return new ItemWriter() {
            @Override
            public void write(List items) throws Exception {
                System.out.println(items);
            }
        };
    }
    @Bean
    public Step step1(){
        return stepBuilderFactory.get("step1")
                .chunk(3)  //设置块的size为3次
                .reader(itemReader())
                .processor(itemProcessor())
                .writer(itemWriter())
                .build();
    }
    //定义作业
    @Bean
    public Job job(){
        return jobBuilderFactory.get("step-chunk-tasklet-job")
                .start(step1())
                .incrementer(new RunIdIncrementer())
                .build();
    }
    public static void main(String[] args) {
        SpringApplication.run(ChunkTaskletJob.class, args);
    }
}

执行完了之后结果

-------------read------------
-------------read------------
-------------read------------
-------------process------------>read-ret
-------------process------------>read-ret
-------------process------------>read-ret
[process-ret->read-ret, process-ret->read-ret, process-ret->read-ret]
-------------read------------
-------------read------------
-------------read------------
-------------process------------>read-ret
-------------process------------>read-ret
-------------process------------>read-ret
[process-ret->read-ret, process-ret->read-ret, process-ret->read-ret]
-------------read------------
-------------read------------
-------------read------------
-------------process------------>read-ret
-------------process------------>read-ret
-------------process------------>read-ret
[process-ret->read-ret, process-ret->read-ret, process-ret->read-ret]
....

观察上面打印结果,得出2个得出。

1>程序一直在循环打印,先循环打印3次reader, 再循环打印3次processor,最后一次性输出3个值。

2>死循环重复上面步骤

问题来了,为啥会出现这种效果,该怎么改进?

其实这个是ChunkTasklet 执行特点,ItemReader会一直循环读,直到返回null,才停止。而processor也是一样,itemReader读多少次,它处理多少次, itemWriter 一次性输出当前次输入的所有数据。

我们改进一下上面案例,要求只读3次, 只需要改动itemReader方法就行

int timer = 3;
@Bean
public ItemReader itemReader(){
    return new ItemReader() {
        @Override
        public Object read() throws Exception, UnexpectedInputException, ParseException, NonTransientResourceException {

            if(timer > 0){
                System.out.println("-------------read------------");
                return  "read-ret-" + timer--;
            }else{
                return null;
            }

        }
    };
}

结果不在死循环了

-------------read------------
-------------read------------
-------------read------------
-------------process------------>read-ret-3
-------------process------------>read-ret-2
-------------process------------>read-ret-1
[process-ret->read-ret-3, process-ret->read-ret-2, process-ret->read-ret-1]

思考一个问题, 如果将timer改为 10,而 .chunk(3) 不变结果会怎样?

-------------read------------
-------------read------------
-------------read------------
-------------process------------>read-ret-10
-------------process------------>read-ret-9
-------------process------------>read-ret-8
[process-ret->read-ret-10, process-ret->read-ret-9, process-ret->read-ret-8]
-------------read------------
-------------read------------
-------------read------------
-------------process------------>read-ret-7
-------------process------------>read-ret-6
-------------process------------>read-ret-5
[process-ret->read-ret-7, process-ret->read-ret-6, process-ret->read-ret-5]
-------------read------------
-------------read------------
-------------read------------
-------------process------------>read-ret-4
-------------process------------>read-ret-3
-------------process------------>read-ret-2
[process-ret->read-ret-4, process-ret->read-ret-3, process-ret->read-ret-2]
-------------read------------
-------------process------------>read-ret-1
[process-ret->read-ret-1]

找出规律了嘛?

当chunkSize = 3 表示 reader 先读3次,提交给processor处理3次,最后由writer输出3个值

timer =10, 表示数据有10条,一个批次(趟)只能处理3条数据,需要4个批次(趟)来处理。

是不是有批处理味道出来

结论:chunkSize 表示: 一趟需要ItemReader读多少次,ItemProcessor要处理多少次。

ChunkTasklet 泛型

上面案例默认的是使用Object类型读、写、处理数据,如果明确了Item的数据类型,可以明确指定具体操作泛型。

import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.StepContribution;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.core.launch.JobLauncher;
import org.springframework.batch.core.launch.support.RunIdIncrementer;
import org.springframework.batch.core.scope.context.ChunkContext;
import org.springframework.batch.core.step.tasklet.Tasklet;
import org.springframework.batch.item.*;
import org.springframework.batch.repeat.RepeatStatus;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;

import java.util.List;

//开启 spring batch 注解--可以让spring容器创建springbatch操作相关类对象
@EnableBatchProcessing
//springboot 项目,启动注解, 保证当前为为启动类
@SpringBootApplication
public class ChunkTaskletJob {

    //作业启动器
    @Autowired
    private JobLauncher jobLauncher;

    //job构造工厂---用于构建job对象
    @Autowired
    private JobBuilderFactory jobBuilderFactory;

    //step 构造工厂--用于构造step对象
    @Autowired
    private StepBuilderFactory stepBuilderFactory;


    int timer = 10;
    //读操作
    @Bean
    public ItemReader<String> itemReader(){
        return new ItemReader<String>() {
            @Override
            public String read() throws Exception, UnexpectedInputException, ParseException, NonTransientResourceException {
                if(timer > 0){
                    System.out.println("-------------read------------");
                    return "read-ret-->" + timer--;
                }else{
                    return null;
                }
            }
        };
    }
    //处理操作
    @Bean
    public ItemProcessor<String, String> itemProcessor(){
        return new ItemProcessor<String, String>() {
            @Override
            public String process(String item) throws Exception {
                System.out.println("-------------process------------>" + item);
                return "process-ret->" + item;
            }
        };
    }

    //写操作
    @Bean
    public ItemWriter<String> itemWriter(){
        return new ItemWriter<String>() {
            @Override
            public void write(List<? extends String> items) throws Exception {
                System.out.println(items);
            }
        };
    }

    //构造一个step对象--chunk
    @Bean
    public Step step1(){
        //tasklet 执行step逻辑, 类似 Thread()--->可以执行runable接口
        return stepBuilderFactory.get("step1")
                .<String, String>chunk(3)  //暂时为3
                .reader(itemReader())
                .processor(itemProcessor())
                .writer(itemWriter())
                .build();
    }

    @Bean
    public  Job job(){
        return jobBuilderFactory.get("chunk-tasklet-job")
                .start(step1())
                .incrementer(new RunIdIncrementer())
                .build();
    }

    public static void main(String[] args) {
        SpringApplication.run(ChunkTaskletJob.class, args);
    }

}

6.4 步骤监听器

前面我们讲了作业的监听器,步骤也有监听器,也是执行步骤执行前监听,步骤执行后监听。

步骤监听器有2个分别是:StepExecutionListener ChunkListener 意义很明显,就是step前后,chunk块执行前后监听。

先看下StepExecutionListener接口

public interface StepExecutionListener extends StepListener {
	void beforeStep(StepExecution stepExecution);
	@Nullable
	ExitStatus afterStep(StepExecution stepExecution);
}

需求:演示StepExecutionListener 用法

自定义监听接口

public class MyStepListener implements StepExecutionListener {
    @Override
    public void beforeStep(StepExecution stepExecution) {
        System.out.println("-----------beforeStep--------->");
    }

    @Override
    public ExitStatus afterStep(StepExecution stepExecution) {
        System.out.println("-----------afterStep--------->");
        return stepExecution.getExitStatus();  //不改动返回状态
    }
}
package com.langfeiyes.batch._09_step_listener;

import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.StepContribution;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.core.launch.JobLauncher;
import org.springframework.batch.core.launch.support.RunIdIncrementer;
import org.springframework.batch.core.scope.context.ChunkContext;
import org.springframework.batch.core.step.tasklet.Tasklet;
import org.springframework.batch.repeat.RepeatStatus;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;

@SpringBootApplication
@EnableBatchProcessing
public class StepListenerJob {
    @Autowired
    private JobLauncher jobLauncher;
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;
    @Bean
    public Tasklet tasklet(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {
                System.out.println("------>" + System.currentTimeMillis());
                return RepeatStatus.FINISHED;
            }
        };
    }


    @Bean
    public MyStepListener stepListener(){
        return new MyStepListener();
    }
    @Bean
    public Step step1(){
        return stepBuilderFactory.get("step1")
                .tasklet(tasklet())
                .listener(stepListener())  
                .build();
    }
    //定义作业
    @Bean
    public Job job(){
        return jobBuilderFactory.get("step-listener-job1")
                .start(step1())
                .incrementer(new RunIdIncrementer())
                .build();
    }
    public static void main(String[] args) {
        SpringApplication.run(StepListenerJob.class, args);
    }

}

在step1方法中,加入:.listener(stepListener()) 即可

同理ChunkListener 操作跟上面一样

public interface ChunkListener extends StepListener {
	static final String ROLLBACK_EXCEPTION_KEY = "sb_rollback_exception";
	void beforeChunk(ChunkContext context);
	void afterChunk(ChunkContext context);
	void afterChunkError(ChunkContext context);
}

唯一的区别是多了一个afterChunkError 方法,表示当chunk执行失败后回调。

6.5 多步骤执行

到目前为止,我们演示的案例基本上都是一个作业, 一个步骤,那如果有多个步骤会怎样?Spring Batch 支持多步骤执行,以应对复杂业务需要多步骤配合执行的场景。

需求:定义2个步骤,然后依次执行

package com.langfeiyes.batch._10_step_multi;

import com.langfeiyes.batch._09_step_listener.MyChunkListener;
import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.StepContribution;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.core.launch.JobLauncher;
import org.springframework.batch.core.launch.support.RunIdIncrementer;
import org.springframework.batch.core.scope.context.ChunkContext;
import org.springframework.batch.core.step.tasklet.Tasklet;
import org.springframework.batch.repeat.RepeatStatus;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;

@SpringBootApplication
@EnableBatchProcessing
public class MultiStepJob {
    @Autowired
    private JobLauncher jobLauncher;
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;
    @Bean
    public Tasklet tasklet1(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {
                System.out.println("--------------tasklet1---------------");
                return RepeatStatus.FINISHED;
            }
        };
    }
    @Bean
    public Tasklet tasklet2(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {
                System.out.println("--------------tasklet2---------------");
                return RepeatStatus.FINISHED;
            }
        };
    }

    @Bean
    public Step step1(){
        return stepBuilderFactory.get("step1")
                .tasklet(tasklet1())
                .build();
    }

    @Bean
    public Step step2(){
        return stepBuilderFactory.get("step2")
                .tasklet(tasklet2())
                .build();
    }

    //定义作业
    @Bean
    public Job job(){
        return jobBuilderFactory.get("step-multi-job1")
                .start(step1())
                .next(step2()) //job 使用next 执行下一步骤
                .incrementer(new RunIdIncrementer())
                .build();
    }
    public static void main(String[] args) {
        SpringApplication.run(MultiStepJob.class, args);
    }
}

定义2个tasklet: tasklet1 tasklet2, 定义2个step: step1 step2 修改 job方法,从.start(step1()) 然后执行到 .next(step2())

Spring Batch 使用next 执行下一步步骤,如果还有第三个step,再加一个next(step3)即可

6.6 步骤控制

上面多个步骤操作,先执行step1 然后是step2,如果有step3, step4,那执行顺序也是从step1到step4。此时爱思考的小伙伴肯定会想,步骤的执行能不能进行条件控制呢?比如:step1执行结束根据业务条件选择执行step2或者执行step3,亦或者直接结束呢?答案是yes:设置步骤执行条件即可

Spring Batch 使用 start next on from to end 不同的api 改变步骤执行顺序。

6.6.1 条件分支控制-使用默认返回状态

需求:作业执行firstStep步骤,如果处理成功执行sucessStep,如果处理失败执行failStep

package com.langfeiyes.batch._11_step_condition;

import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.StepContribution;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.core.launch.JobLauncher;
import org.springframework.batch.core.launch.support.RunIdIncrementer;
import org.springframework.batch.core.scope.context.ChunkContext;
import org.springframework.batch.core.step.tasklet.Tasklet;
import org.springframework.batch.repeat.RepeatStatus;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;

@SpringBootApplication
@EnableBatchProcessing
public class ConditionStepJob {
    @Autowired
    private JobLauncher jobLauncher;
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;
    @Bean
    public Tasklet firstTasklet(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {
                System.out.println("--------------firstTasklet---------------");
                return RepeatStatus.FINISHED;
                //throw new RuntimeException("测试fail结果");
            }
        };
    }
    @Bean
    public Tasklet successTasklet(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {
                System.out.println("--------------successTasklet---------------");
                return RepeatStatus.FINISHED;
            }
        };
    }
    @Bean
    public Tasklet failTasklet(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {
                System.out.println("--------------failTasklet---------------");
                return RepeatStatus.FINISHED;
            }
        };
    }
    @Bean
    public Step firstStep(){
        return stepBuilderFactory.get("step1")
                .tasklet(firstTasklet())
                .build();
    }
    @Bean
    public Step successStep(){
        return stepBuilderFactory.get("successStep")
                .tasklet(successTasklet())
                .build();
    }
    @Bean
    public Step failStep(){
        return stepBuilderFactory.get("failStep")
                .tasklet(failTasklet())
                .build();
    }

    //定义作业
    @Bean
    public Job job(){
        return jobBuilderFactory.get("condition-multi-job")
                .start(firstStep())
                .on("FAILED").to(failStep())
                .from(firstStep()).on("*").to(successStep())
                .end()
                .incrementer(new RunIdIncrementer())
                .build();
    }
    public static void main(String[] args) {
        SpringApplication.run(ConditionStepJob.class, args);
    }
}

观察给出的案例,job方法以 .start(firstStep()) 开始作业,执行完成之后, 使用onfrom 2个方法实现流程转向。

.on("FAILED").to(failStep()) 表示当**firstStep()**返回FAILED时执行。

.from(firstStep()).on("*").to(successStep()) 另外一个分支,表示当**firstStep()**返回 * 时执行。

上面逻辑有点像 if / else 语法

if("FAILED".equals(firstStep())){
    failStep();
}else{
    successStep();
}

几个注意点:

1> on 方法表示条件, 上一个步骤返回值,匹配指定的字符串,满足后执行后续 to 步骤

2> * 为通配符,表示能匹配任意返回值

3> from 表示从某个步骤开始进行条件判断

4> 分支判断结束,流程以end方法结束,表示if/else逻辑结束

5> on 方法中字符串取值于 ExitStatus 类常量,当然也可以自定义。

6.6.2 条件分支控制-使用自定义状态值

前面也说了,on条件的值取值于ExitStatus 类常量,具体值有:UNKNOWN,EXECUTING,COMPLETED,NOOP,FAILED,STOPPED等,如果此时我想自定义返回值呢,是否可行?答案还是yes:Spring Batch 提供JobExecutionDecider 接口实现状态值定制。

需求:先执行firstStep,如果返回值为A,执行stepA, 返回值为B,执行stepB, 其他执行defaultStep

分析:先定义一个决策器,随机决定返回A / B / C

public class MyStatusDecider implements JobExecutionDecider {
    @Override
    public FlowExecutionStatus decide(JobExecution jobExecution, StepExecution stepExecution) {
        long ret = new Random().nextInt(3);
        if(ret == 0){
            return new FlowExecutionStatus("A");
        }else if(ret == 1){
            return new FlowExecutionStatus("B");
        }else{
            return new FlowExecutionStatus("C");
        }
    }
}
package com.langfeiyes.batch._11_step_condition_decider;

import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.StepContribution;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.core.launch.JobLauncher;
import org.springframework.batch.core.launch.support.RunIdIncrementer;
import org.springframework.batch.core.scope.context.ChunkContext;
import org.springframework.batch.core.step.tasklet.Tasklet;
import org.springframework.batch.repeat.RepeatStatus;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;

@SpringBootApplication
@EnableBatchProcessing
public class CustomizeStatusStepJob {
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;
    @Bean
    public Tasklet taskletFirst(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {
                System.out.println("--------------taskletFirst---------------");
                return RepeatStatus.FINISHED;
            }
        };
    }
    @Bean
    public Tasklet taskletA(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {
                System.out.println("--------------taskletA---------------");
                return RepeatStatus.FINISHED;
            }
        };
    }
    @Bean
    public Tasklet taskletB(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {
                System.out.println("--------------taskletB---------------");
                return RepeatStatus.FINISHED;
            }
        };
    }
    @Bean
    public Tasklet taskletDefault(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {
                System.out.println("--------------taskletDefault---------------");
                return RepeatStatus.FINISHED;
            }
        };
    }


    @Bean
    public Step firstStep(){
        return stepBuilderFactory.get("firstStep")
                .tasklet(taskletFirst())
                .build();
    }

    @Bean
    public Step stepA(){
        return stepBuilderFactory.get("stepA")
                .tasklet(taskletA())
                .build();
    }

    @Bean
    public Step stepB(){
        return stepBuilderFactory.get("stepB")
                .tasklet(taskletB())
                .build();
    }

    @Bean
    public Step defaultStep(){
        return stepBuilderFactory.get("defaultStep")
                .tasklet(taskletDefault())
                .build();
    }


    //决策器
    @Bean
    public MyStatusDecider statusDecider(){
        return new MyStatusDecider();
    }


    //定义作业
    @Bean
    public Job job(){
        return jobBuilderFactory.get("customize-step-job")
                .start(firstStep())
                .next(statusDecider()) 
                .from(statusDecider()).on("A").to(stepA())
                .from(statusDecider()).on("B").to(stepB())
                .from(statusDecider()).on("*").to(defaultStep())
                .end()
                .incrementer(new RunIdIncrementer())
                .build();
    }
    public static void main(String[] args) {
        SpringApplication.run(CustomizeStepJob.class, args);
    }

}

反复执行,会返回打印的值有

--------------taskletA---------------
--------------taskletB---------------
--------------taskletDefault---------------    

它们随机切换,为啥能做到这样?注意,并不是firstStep() 执行返回值为A/B/C控制流程跳转,而是由后面**.next(statusDecider())** 决策器。

6.7 步骤状态

Spring Batch 使用ExitStatus 类表示步骤、块、作业执行状态,大体上有以下几种:

public class ExitStatus implements Serializable, Comparable<ExitStatus> {

    //未知状态
	public static final ExitStatus UNKNOWN = new ExitStatus("UNKNOWN");

    //执行中
	public static final ExitStatus EXECUTING = new ExitStatus("EXECUTING");

    //执行完成
	public static final ExitStatus COMPLETED = new ExitStatus("COMPLETED");

    //无效执行
	public static final ExitStatus NOOP = new ExitStatus("NOOP");

    //执行失败
	public static final ExitStatus FAILED = new ExitStatus("FAILED");

    //执行中断
	public static final ExitStatus STOPPED = new ExitStatus("STOPPED");
    ...
}    

一般来说,作业启动之后,这些状态皆为流程自行控制。顺利结束返回:COMPLETED, 异常结束返回:FAILED,无效执行返回:NOOP, 这是肯定有小伙伴说,能不能编程控制呢?答案是可以的。

Spring Batch 提供 3个方法决定作业流程走向:

end():作业流程直接成功结束,返回状态为:COMPLETED

fail():作业流程直接失败结束,返回状态为:FAILED

stopAndRestart(step) :作业流程中断结束,返回状态:STOPPED 再次启动时,从step位置开始执行 (注意:前提是参数与Job Name一样)

**需求:当步骤firstStep执行抛出异常时,通过end, fail,stopAndRestart改变步骤执行状态 **

package com.langfeiyes.batch._12_step_status;

import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.StepContribution;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.core.launch.JobLauncher;
import org.springframework.batch.core.launch.support.RunIdIncrementer;
import org.springframework.batch.core.scope.context.ChunkContext;
import org.springframework.batch.core.step.tasklet.Tasklet;
import org.springframework.batch.repeat.RepeatStatus;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;

//开启 spring batch 注解--可以让spring容器创建springbatch操作相关类对象
@EnableBatchProcessing
//springboot 项目,启动注解, 保证当前为为启动类
@SpringBootApplication
public class StatusStepJob {

    //作业启动器
    @Autowired
    private JobLauncher jobLauncher;

    //job构造工厂---用于构建job对象
    @Autowired
    private JobBuilderFactory jobBuilderFactory;

    //step 构造工厂--用于构造step对象
    @Autowired
    private StepBuilderFactory stepBuilderFactory;


    //构造一个step对象执行的任务(逻辑对象)
    @Bean
    public Tasklet firstTasklet(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {

                System.out.println("----------------firstTasklet---------------");

                throw new RuntimeException("假装失败了");
                //return RepeatStatus.FINISHED;  //执行完了
            }
        };
    }

    @Bean
    public Tasklet successTasklet(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {

                System.out.println("----------------successTasklet--------------");

                return RepeatStatus.FINISHED;  //执行完了
            }
        };
    }
    @Bean
    public Tasklet failTasklet(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {

                System.out.println("----------------failTasklet---------------");

                return RepeatStatus.FINISHED;  //执行完了
            }
        };
    }



    //构造一个step对象
    @Bean
    public Step firstStep(){
        //tasklet 执行step逻辑, 类似 Thread()--->可以执行runable接口
        return stepBuilderFactory.get("firstStep")
                .tasklet(firstTasklet())
                .build();
    }
    //构造一个step对象
    @Bean
    public Step successStep(){
        //tasklet 执行step逻辑, 类似 Thread()--->可以执行runable接口
        return stepBuilderFactory.get("successStep")
                .tasklet(successTasklet())
                .build();
    }

    //构造一个step对象
    @Bean
    public Step failStep(){
        //tasklet 执行step逻辑, 类似 Thread()--->可以执行runable接口
        return stepBuilderFactory.get("failStep")
                .tasklet(failTasklet())
                .build();
    }

    //如果firstStep 执行成功:下一步执行successStep 否则是failStep
    @Bean
    public  Job job(){
        return jobBuilderFactory.get("status-step-job")
                .start(firstStep())
                //表示将当前本应该是失败结束的步骤直接转成正常结束--COMPLETED
                //.on("FAILED").end()  
                //表示将当前本应该是失败结束的步骤直接转成失败结束:FAILED
                //.on("FAILED").fail()  
                //表示将当前本应该是失败结束的步骤直接转成停止结束:STOPPED   里面参数表示后续要重启时, 从successStep位置开始
                .on("FAILED").stopAndRestart(successStep())
                .from(firstStep()).on("*").to(successStep())
                .end()
                .incrementer(new RunIdIncrementer())
                .build();
    }

    public static void main(String[] args) {
        SpringApplication.run(StatusStepJob.class, args);
    }

}

6.8 流式步骤

FlowStep 流式步骤,也可以理解为步骤集合,由多个子步骤组成。作业执行时,将它当做一个普通步骤执行。一般用于较为复杂的业务,比如:一个业务逻辑需要拆分成按顺序执行的子步骤。

需求:先后执行stepA,stepB,stepC, 其中stepB中包含stepB1, stepB2,stepB3。

package com.langfeiyes.batch._13_flow_step;

import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.StepContribution;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.core.job.builder.FlowBuilder;
import org.springframework.batch.core.job.builder.JobBuilder;
import org.springframework.batch.core.job.builder.SimpleJobBuilder;
import org.springframework.batch.core.job.flow.Flow;
import org.springframework.batch.core.launch.support.RunIdIncrementer;
import org.springframework.batch.core.scope.context.ChunkContext;
import org.springframework.batch.core.step.tasklet.Tasklet;
import org.springframework.batch.repeat.RepeatStatus;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;

@SpringBootApplication
@EnableBatchProcessing
public class FlowStepJob {
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;

    @Bean
    public Tasklet taskletA(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {
                System.out.println("------------stepA--taskletA---------------");
                return RepeatStatus.FINISHED;
            }
        };
    }
    @Bean
    public Tasklet taskletB1(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {
                System.out.println("------------stepB--taskletB1---------------");
                return RepeatStatus.FINISHED;
            }
        };
    }
    @Bean
    public Tasklet taskletB2(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {
                System.out.println("------------stepB--taskletB2---------------");
                return RepeatStatus.FINISHED;
            }
        };
    }
    @Bean
    public Tasklet taskletB3(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {
                System.out.println("------------stepB--taskletB3---------------");
                return RepeatStatus.FINISHED;
            }
        };
    }
    @Bean
    public Tasklet taskletC(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {
                System.out.println("------------stepC--taskletC---------------");
                return RepeatStatus.FINISHED;
            }
        };
    }


    @Bean
    public Step stepA(){
        return stepBuilderFactory.get("stepA")
                .tasklet(taskletA())
                .build();
    }


    @Bean
    public Step stepB1(){
        return stepBuilderFactory.get("stepB1")
                .tasklet(taskletB1())
                .build();
    }
    @Bean
    public Step stepB2(){
        return stepBuilderFactory.get("stepB2")
                .tasklet(taskletB2())
                .build();
    }
    @Bean
    public Step stepB3(){
        return stepBuilderFactory.get("stepB3")
                .tasklet(taskletB3())
                .build();
    }
    @Bean
    public Flow flowB(){
        return new FlowBuilder<Flow>("flowB")
                .start(stepB1())
                .next(stepB2())
                .next(stepB3())
                .build();
    }
    @Bean
    public Step stepB(){
        return stepBuilderFactory.get("stepB")
                .flow(flowB())
                .build();
    }

    @Bean
    public Step stepC(){
        return stepBuilderFactory.get("stepC")
                .tasklet(taskletC())
                .build();
    }

    //定义作业
    @Bean
    public Job job(){
        return jobBuilderFactory.get("flow-step-job")
                .start(stepA())
                .next(stepB())
                .next(stepC())
                .incrementer(new RunIdIncrementer())
                .build();
    }
    public static void main(String[] args) {
        SpringApplication.run(FlowStepJob.class, args);
    }

}

此时的flowB()就是一个FlowStep,包含了stepB1, stepB2, stepB3 3个子step,他们全部执行完后, stepB才能算执行完成。下面执行结果也验证了这点。

2022-12-03 14:54:16.644  INFO 19116 --- [           main] o.s.batch.core.job.SimpleStepHandler     : Executing step: [stepA]
------------stepA--taskletA---------------
2022-12-03 14:54:16.699  INFO 19116 --- [           main] o.s.batch.core.step.AbstractStep         : Step: [stepA] executed in 55ms
2022-12-03 14:54:16.738  INFO 19116 --- [           main] o.s.batch.core.job.SimpleStepHandler     : Executing step: [stepB]
2022-12-03 14:54:16.788  INFO 19116 --- [           main] o.s.batch.core.job.SimpleStepHandler     : Executing step: [stepB1]
------------stepB--taskletB1---------------
2022-12-03 14:54:16.844  INFO 19116 --- [           main] o.s.batch.core.step.AbstractStep         : Step: [stepB1] executed in 56ms
2022-12-03 14:54:16.922  INFO 19116 --- [           main] o.s.batch.core.job.SimpleStepHandler     : Executing step: [stepB2]
------------stepB--taskletB2---------------
2022-12-03 14:54:16.952  INFO 19116 --- [           main] o.s.batch.core.step.AbstractStep         : Step: [stepB2] executed in 30ms
2022-12-03 14:54:16.996  INFO 19116 --- [           main] o.s.batch.core.job.SimpleStepHandler     : Executing step: [stepB3]
------------stepB--taskletB3---------------
2022-12-03 14:54:17.032  INFO 19116 --- [           main] o.s.batch.core.step.AbstractStep         : Step: [stepB3] executed in 36ms
2022-12-03 14:54:17.057  INFO 19116 --- [           main] o.s.batch.core.step.AbstractStep         : Step: [stepB] executed in 318ms
2022-12-03 14:54:17.165  INFO 19116 --- [           main] o.s.batch.core.job.SimpleStepHandler     : Executing step: [stepC]
------------stepC--taskletC---------------
2022-12-03 14:54:17.215  INFO 19116 --- [           main] o.s.batch.core.step.AbstractStep         : Step: [stepC] executed in 50ms

使用FlowStep的好处在于,在处理复杂额批处理逻辑中,flowStep可以单独实现一个子步骤流程,为批处理提供更高的灵活性。

七、批处理数据表

如果选择数据库方式存储批处理数据,Spring Batch 在启动时会自动创建9张表,分别存储: JobExecution、JobContext、JobParameters、JobInstance、JobExecution id序列、Job id序列、StepExecution、StepContext/ChunkContext、StepExecution id序列 等对象。Spring Batch 提供 JobRepository 组件来实现这些表的CRUD操作,并且这些操作基本上封装在步骤,块,作业api操作中,并不需要我们太多干预,所以这章内容了解即可。

spb

7.1 batch_job_instance表

当作业第一次执行时,会根据作业名,标识参数生成一个唯一JobInstance对象,batch_job_instance表会记录一条信息代表这个作业实例。

image-20221203161945526

字段描述
JOB_INSTANCE_ID作业实例主键
VERSION乐观锁控制的版本号
JOB_NAME作业名称
JOB_KEY作业名与标识性参数的哈希值,能唯一标识一个job实例

7.2 batch_job_execution表

每次启动作业时,都会创建一个JobExecution对象,代表一次作业执行,该对象记录存放于batch_job_execution 表。

image-20221203163612353

字段描述
JOB_EXECUTION_IDjob执行对象主键
VERSION乐观锁控制的版本号
JOB_INSTANCE_IDJobInstanceId(归属于哪个JobInstance)
CREATE_TIME记录创建时间
START_TIME作业执行开始时间
END_TIME作业执行结束时间
STATUS作业执行的批处理状态
EXIT_CODE作业执行的退出码
EXIT_MESSAGE作业执行的退出信息
LAST_UPDATED最后一次更新记录的时间

7.3 batch_job_execution_context表

batch_job_execution_context用于保存JobContext对应的ExecutionContext对象数据。

image-20221203164447723

字段描述
JOB_EXECUTION_IDjob执行对象主键
SHORT_CONTEXTExecutionContext系列化后字符串缩减版
SERIALIZED_CONTEXTExecutionContext系列化后字符串

7.4 batch_job_execution_params表

作业启动时使用标识性参数保存的位置:batch_job_execution_params, 一个参数一个记录

image-20221203165053741

字段描述
JOB_EXECUTION_IDjob执行对象主键
TYPE_CODE标记参数类型
KEY_NAME参数名
STRING_VALUE当参数类型为String时有值
DATE_VALUE当参数类型为Date时有值
LONG_VAL当参数类型为LONG时有值
DOUBLE_VAL当参数类型为DOUBLE时有值
IDENTIFYING用于标记该参数是否为标识性参数

7.5 btch_step_execution表

作业启动,执行步骤,每个步骤执行信息保存在tch_step_execution表中

image-20221203165722670

字段描述
STEP_EXECUTION_ID步骤执行对象id
VERSION乐观锁控制版本号
STEP_NAME步骤名称
JOB_EXECUTION_ID作业执行对象id
START_TIME步骤执行的开始时间
END_TIME步骤执行的结束时间
STATUS步骤批处理状态
COMMIT_COUNT在步骤执行中提交的事务次数
READ_COUNT读入的条目数量
FILTER_COUNT由于ItemProcessor返回null而过滤掉的条目数
WRITE_COUNT写入条目数量
READ_SKIP_COUNT由于ItemReader中抛出异常而跳过的条目数量
PROCESS_SKIP_COUNT由于ItemProcessor中抛出异常而跳过的条目数量
WRITE_SKIP_COUNT由于ItemWriter中抛出异常而跳过的条目数量
ROLLBACK_COUNT在步骤执行中被回滚的事务数量
EXIT_CODE步骤的退出码
EXT_MESSAGE步骤执行返回的信息
LAST_UPDATE最后一次更新记录时间

7.6 batch_step_execution_context表

StepContext对象对应的ExecutionContext 保存的数据表:batch_step_execution_context

image-20221203171011865

字段描述
STEP_EXECUTION_ID步骤执行对象id
SHORT_CONTEXTExecutionContext系列化后字符串缩减版
SERIALIZED_CONTEXTExecutionContext系列化后字符串

7.7 H2内存数据库

除了关系型数据库保存的数据外,Spring Batch 也执行内存数据库,比如H2,HSQLDB,这些数据库将数据缓存在内存中,当批处理结束后,数据会被清除,一般用于进行单元测试,不建议在生产环境中使用。

八、作业控制

作业的运行指的是对作业的控制,包括作业启动,作业停止,作业异常处理,作业重启处理等。

8.1 作业启动

8.1.1 SpringBoot 启动

目前为止,上面所有的案例都是使用Spring Boot 原生功能来启动作业的,其核心类:JobLauncherApplicationRunner , Spring Boot启动之后,马上调用该类run方法,然后将操作委托给SimpleJobLauncher类run方法执行。默认情况下,Spring Boot一启动马上执行作业。

如果不想Spring Boot启动就执行,可以通过配置进行修改

spring:
  batch:
    job:
      enabled: false   #false表示不启动

8.1.2 Spring 单元测试启动

开发中如果想简单验证批处理逻辑是否能运行,可以使用单元测试方式启动作业

先引入spring-test测试依赖

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-test</artifactId>
</dependency>

建立启动类

@SpringBootApplication
@EnableBatchProcessing
public class App {
    public static void main(String[] args) {
        SpringApplication.run(App.class, args);
    }
}

建立测试类

package com.langfeiyes.batch._14_job_start_test;

import org.junit.jupiter.api.Test;
import org.springframework.batch.core.*;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.core.launch.JobLauncher;
import org.springframework.batch.core.scope.context.ChunkContext;
import org.springframework.batch.core.step.tasklet.Tasklet;
import org.springframework.batch.core.step.tasklet.TaskletStep;
import org.springframework.batch.repeat.RepeatStatus;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;

@SpringBootTest(classes = App.class)
public class StartJobTest {
    //job调度器
    @Autowired
    private JobLauncher jobLauncher;
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;
    public Tasklet tasklet(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {
                System.out.println("Hello SpringBatch....");
                return RepeatStatus.FINISHED;
            }
        };
    }
    public Step  step1(){
        TaskletStep step1 = stepBuilderFactory.get("step1")
                .tasklet(tasklet())
                .build();
        return step1;
    }
    //定义作业
    public Job job(){
        Job job = jobBuilderFactory.get("start-test-job")
                .start(step1())
                .build();
        return job;
    }

    @Test
    public void testStart() throws Exception{
        //job作业启动
        //参数1:作业实例,参数2:作业运行携带参数
        jobLauncher.run(job(), new JobParameters());
    }
}

跟之前的SpringBoot启动区别在于多了JobLauncher 对象的获取,再由这个对象调用run方法启动。

8.1.3 RESTful API 启动

如果批处理不是SpringBoot启动就启动,而是通过web请求控制,那该怎么办呢?不难,引入web环境即可

1>首先限制,不随SpringBoot启动而启动

spring:
  batch:
    job:
      enabled: false   #false表示不启动

2>引入web 环境

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-web</artifactId>
</dependency>

3>编写启动类

@SpringBootApplication
public class App {
    public static void main(String[] args) {
        SpringApplication.run(App.class, args);
    }
}

4>编写配置类

package com.langfeiyes.batch._15_job_start_restful;

import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.StepContribution;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.core.scope.context.ChunkContext;
import org.springframework.batch.core.step.tasklet.Tasklet;
import org.springframework.batch.core.step.tasklet.TaskletStep;
import org.springframework.batch.repeat.RepeatStatus;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

@EnableBatchProcessing
@Configuration
public class BatchConfig {
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;

    @Bean
    public Tasklet tasklet(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {
                System.out.println("Hello SpringBatch....");
                return RepeatStatus.FINISHED;
            }
        };
    }

    @Bean
    public Step step1(){
        TaskletStep step1 = stepBuilderFactory.get("step1")
                .tasklet(tasklet())
                .build();
        return step1;
    }
    //定义作业
    @Bean
    public Job job(){
        Job job = jobBuilderFactory.get("hello-restful-job")
                .start(step1())
                .build();
        return job;
    }
}

5>编写Controller类

package com.langfeiyes.batch._15_job_start_restful;

import org.springframework.batch.core.*;
import org.springframework.batch.core.launch.JobLauncher;
import org.springframework.batch.core.repository.JobExecutionAlreadyRunningException;
import org.springframework.batch.core.repository.JobInstanceAlreadyCompleteException;
import org.springframework.batch.core.repository.JobRestartException;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;

import java.util.Map;
import java.util.Properties;

@RestController
public class HelloController {
    @Autowired
    private JobLauncher jobLauncher;
    @Autowired
    private Job job;
    @GetMapping("/job/start")
    public ExitStatus start() throws Exception {
         //启动job作业
        JobExecution jobExet = launcher.run(job, jp);
        return jobExet.getExitStatus();
    }
}

6>测试

image-20221203190107095

注意:如果需要接收参数

image-20230112202915961

1>作业使用run.id自增

//构造一个job对象
@Bean
public Job job(){
    return jobBuilderFactory.get("hello-restful-job")
        .start(step1())
        .incrementer(new RunIdIncrementer())
        .build();
}

2>改动HelloController接口方法

@RestController
public class HelloController {
    @Autowired
    private JobLauncher launcher;
    @Autowired
    private Job job;
    @Autowired
    private JobExplorer jobExplorer;  //job 展示对象
    @GetMapping("/job/start")
    public ExitStatus startJob(String name) throws Exception {
        //启动job作业
        JobParameters jp = new JobParametersBuilder(jobExplorer)
                .getNextJobParameters(job)
                .addString("name", name)
                .toJobParameters();
        JobExecution jobExet = launcher.run(job, jp);
        return jobExet.getExitStatus();
    }
}

8.2 作业停止

作业的停止,存在有3种情况:

  • 一种自然结束

    作业成功执行,正常停止,此时作业返回状态为:COMPLETED

  • 一种异常结束 作业执行过程因为各种意外导致作业中断而停止,大多数作业返回状态为:FAILED

  • 一种编程结束

某个步骤处理数据结果不满足下一步骤执行前提,手动让其停止,一般设置返回状态为:STOPED

上面1,2种情况相对简单,我们重点说下第三种:以编程方式让作业停止。

模拟一个操作场景

1>有一个资源类,里面有2个属性:总数:totalCount = 100, 读取数:readCount = 0

2>设计2个步骤,step1 用于叠加readCount 模拟从数据库中读取资源, step2 用于执行逻辑

3>当totalCount == readCount 时,为正常情况,正常结束。如果不等时,为异常状态。此时不执行step2,直接停止作业。

4>修复数据,在从step1开始执行,并完成作业

public class ResouceCount {
    public static int totalCount = 100;  //总数
    public static int  readCount = 0;    //读取数
}

要实现上面需求,有2种方式可以实现

方案1:Step 步骤监听器方式

监听器

public class StopStepListener implements StepExecutionListener {
    @Override
    public void beforeStep(StepExecution stepExecution) {
    }

    @Override
    public ExitStatus afterStep(StepExecution stepExecution) {

       //不满足
        if(ResouceCount.totalCount != ResouceCount.readCount){
            return ExitStatus.STOPPED;  //手动停止,后续可以重启
        }
        return stepExecution.getExitStatus();
    }
}

代码

package com.langfeiyes.batch._16_job_stop;

import com.langfeiyes.batch._01_hello.HelloJob;
import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.StepContribution;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.core.scope.context.ChunkContext;
import org.springframework.batch.core.step.tasklet.Tasklet;
import org.springframework.batch.repeat.RepeatStatus;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;

@SpringBootApplication
@EnableBatchProcessing
public class ListenerJobStopJob {

    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;

    private int readCount = 50; //模拟只读取50个
    @Bean
    public Tasklet tasklet1(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {
                for (int i = 1; i <= readCount; i++) {
                    System.out.println("---------------step1执行-"+i+"------------------");
                    ResouceCount.readCount ++;
                }
                return RepeatStatus.FINISHED;
            }
        };
    }

    @Bean
    public Tasklet tasklet2(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {
                System.err.println("step2执行了.......");
                System.err.println("readCount:" + ResouceCount.readCount + ", totalCount:" + ResouceCount.totalCount);
                return RepeatStatus.FINISHED;
            }
        };
    }

    @Bean
    public StopStepListener stopStepListener(){
        return new StopStepListener();
    }
    @Bean
    public Step step1(){
        return stepBuilderFactory.get("step1")
                .tasklet(tasklet1())
                .listener(stopStepListener())
                .allowStartIfComplete(true)  //执行完后,运行重启
                .build();
    }

    @Bean
    public Step step2(){
        return stepBuilderFactory.get("step2")
                .tasklet(tasklet2())
                .build();
    }

    //定义作业
    @Bean
    public Job job(){
        return jobBuilderFactory.get("job-stop-job")
                .start(step1())
                .on("STOPPED").stopAndRestart(step1())
                .from(step1()).on("*").to(step2()).end()
                .build();

    }
    public static void main(String[] args) {
        SpringApplication.run(ListenerJobStopJob.class, args);
    }
}

第一次执行:tasklet1 中readCount 默认执行50次,不满足条件, stopStepListener() afterStep 返回STOPPED, job进行条件控制走**.on("STOPPED").stopAndRestart(step1())** 分支,停止并允许重启--下次重启,从step1步骤开始执行

第二次执行, 修改readCount = 100, 再次启动作业,task1遍历100次,满足条件, stopStepListener() afterStep 正常返回,job条件控制走**.from(step1()).on("*").to(step2()).end()**分支,正常结束。

注意:step1() 方法中**.allowStartIfComplete(true)** 代码必须添加,因为第一次执行step1步骤,虽然不满足条件,但是它仍属于正常结束(正常执行完tasklet1的流程),状态码:COMPLETED, 第二次重启,默认情况下正常结束的step1步骤是不允许再执行的,所以必须设置:.allowStartIfComplete(true) 允许step1即使完成也可以重启。

方案2:StepExecution停止标记

package com.langfeiyes.batch._17_job_stop_sign;

import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.StepContribution;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.core.scope.context.ChunkContext;
import org.springframework.batch.core.step.tasklet.Tasklet;
import org.springframework.batch.repeat.RepeatStatus;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;

@SpringBootApplication
@EnableBatchProcessing
public class SignJobStopJob {

    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;

    private int readCount = 50; //模拟只读取50个
    @Bean
    public Tasklet tasklet1(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {
                for (int i = 1; i <= readCount; i++) {
                    System.out.println("---------------step1执行-"+i+"------------------");
                    ResouceCount.readCount ++;
                }

                if(ResouceCount.readCount != ResouceCount.totalCount){
                    chunkContext.getStepContext().getStepExecution().setTerminateOnly();
                }

                return RepeatStatus.FINISHED;
            }
        };
    }

    @Bean
    public Tasklet tasklet2(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {
                System.err.println("step2执行了.......");
                System.err.println("readCount:" + ResouceCount.readCount + ", totalCount:" + ResouceCount.totalCount);
                return RepeatStatus.FINISHED;
            }
        };
    }


    @Bean
    public Step step1(){
        return stepBuilderFactory.get("step1")
                .tasklet(tasklet1())
                .allowStartIfComplete(true)
                .build();
    }

    @Bean
    public Step step2(){
        return stepBuilderFactory.get("step2")
                .tasklet(tasklet2())
                .build();
    }

    //定义作业
    @Bean
    public Job job(){
         return jobBuilderFactory.get("job-stop-job")
                .start(step1())
                //.on("STOPPED").stopAndRestart(step1())
                //.from(step1()).on("*").to(step2()).end()
                .next(step2())
                .build();

    }
    public static void main(String[] args) {
        SpringApplication.run(SignJobStopJob.class, args);
    }
}

变动的代码有2处

tasket1(), 多了下面判断

if(ResouceCount.readCount != ResouceCount.totalCount){
    chunkContext.getStepContext().getStepExecution().setTerminateOnly();
}

其中的StepExecution#setTerminateOnly() 给运行中的stepExecution设置停止标记,Spring Batch 识别后直接停止步骤,进而停止流程

job() 改动

return jobBuilderFactory.get("job-stop-job")
    .start(step1())
    .next(step2())
    .build();

正常设置步骤流程。

8.3 作业重启

作业重启,表示允许作业步骤重新执行,默认情况下,只允许异常或终止状态的步骤重启,但有时存在特殊场景,要求需要其他状态步骤重启,为应付各种复杂的情形,Spring Batch 提供3种重启控制操作。

8.3.1 禁止重启

这种适用一次性执行场景,如果执行失败,就不允许再次执行。可以使用作业的禁止重启逻辑

package com.langfeiyes.batch._18_job_restart_forbid;

import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.StepContribution;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.core.scope.context.ChunkContext;
import org.springframework.batch.core.step.tasklet.Tasklet;
import org.springframework.batch.repeat.RepeatStatus;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;

@SpringBootApplication
@EnableBatchProcessing
public class JobForBidRestartJob {
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;

    @Bean
    public Tasklet tasklet1(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {
                System.err.println("-------------tasklet1-------------");

                chunkContext.getStepContext().getStepExecution().setTerminateOnly(); //停止步骤
                return RepeatStatus.FINISHED;

            }
        };
    }

    @Bean
    public Tasklet tasklet2(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {
                System.err.println("-------------tasklet2-------------");
                return RepeatStatus.FINISHED;
            }
        };
    }


    @Bean
    public Step step1(){
        return stepBuilderFactory.get("step1")
                .tasklet(tasklet1())
                .build();
    }

    @Bean
    public Step step2(){
        return stepBuilderFactory.get("step2")
                .tasklet(tasklet2())
                .build();
    }

    //定义作业
    @Bean
    public Job job(){
        return jobBuilderFactory.get("job-forbid-restart-job")
                .preventRestart()  //禁止重启
                .start(step1())
                .next(step2())
                .build();

    }
    public static void main(String[] args) {
        SpringApplication.run(JobForBidRestartJob.class, args);
    }
}

观察上面代码,比较特别之处:

tasklet1() 加了setTerminateOnly 设置,表示让步骤退出

 chunkContext.getStepContext().getStepExecution().setTerminateOnly();

job() 多了**.preventRestart()** 逻辑,表示步骤不允许重启

第一次按上面的代码执行一次, step1() 状态为 STOPPED

第二次去掉setTerminateOnly逻辑,重新启动步骤,观察结果,直接报错

image-20221204111033730

8.3.2 限制重启次数

适用于重启次数有限的场景,比如下载/读取操作,可能因为网络原因导致下载/读取失败,运行重试几次,但是不能无限重试。这时可以对步骤执行进行重启次数限制。

package com.langfeiyes.batch._19_job_restart_limit;

import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.StepContribution;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.core.scope.context.ChunkContext;
import org.springframework.batch.core.step.tasklet.Tasklet;
import org.springframework.batch.repeat.RepeatStatus;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;

@SpringBootApplication
@EnableBatchProcessing
public class JobLimitRestartJob {
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;

    @Bean
    public Tasklet tasklet1(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {
                System.err.println("-------------tasklet1-------------");

                chunkContext.getStepContext().getStepExecution().setTerminateOnly(); //停止步骤
                return RepeatStatus.FINISHED;

            }
        };
    }

    @Bean
    public Tasklet tasklet2(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {
                System.err.println("-------------tasklet2-------------");
                return RepeatStatus.FINISHED;
            }
        };
    }


    @Bean
    public Step step1(){
        return stepBuilderFactory.get("step1")
                .startLimit(2)
                .tasklet(tasklet1())
                .build();
    }

    @Bean
    public Step step2(){
        return stepBuilderFactory.get("step2")
                .tasklet(tasklet2())
                .build();
    }

    //定义作业
    @Bean
    public Job job(){
        return jobBuilderFactory.get("job-restart-limit-job")
                .start(step1())
                .next(step2())
                .build();

    }
    public static void main(String[] args) {
        SpringApplication.run(JobLimitRestartJob.class, args);
    }
}

变动:

step1() 添加了**.startLimit(2)** 表示运行重启2次,注意,第一次启动也算一次

tasklet1() 设置setTerminateOnly 第一次先让step1 状态为STOPPED

第一次执行, step1 为 STOPPED 状态

第二次执行,不做任何操作,第二次执行,step1 还是STOPPED状态

第三次执行, 注释掉tasklet1() 中setTerminateOnly , 查询结果

image-20221204112325377

8.3.3 无限重启

Spring Batch 限制同job名跟同标识参数作业只能成功执行一次,这是Spring Batch 定理,无法改变的。但是,对于步骤不一定适用,可以通过步骤的allowStartIfComplete(true) 实现步骤的无限重启。

package com.langfeiyes.batch._20_job_restart_allow;

import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.StepContribution;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.core.scope.context.ChunkContext;
import org.springframework.batch.core.step.tasklet.Tasklet;
import org.springframework.batch.repeat.RepeatStatus;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;

@SpringBootApplication
@EnableBatchProcessing
public class JobAllowRestartJob {
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;

    @Bean
    public Tasklet tasklet1(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {
                System.err.println("-------------tasklet1-------------");
                return RepeatStatus.FINISHED;

            }
        };
    }

    @Bean
    public Tasklet tasklet2(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {
                System.err.println("-------------tasklet2-------------");
                return RepeatStatus.FINISHED;
            }
        };
    }


    @Bean
    public Step step1(){
        return stepBuilderFactory.get("step1")
                .tasklet(tasklet1())
                .build();
    }

    @Bean
    public Step step2(){
        return stepBuilderFactory.get("step2")
                .tasklet(tasklet2())
                .build();
    }

    //定义作业
    @Bean
    public Job job(){
        return jobBuilderFactory.get("job-allow-restart-job")
                .start(step1())
                .next(step2())
                .build();

    }
    public static void main(String[] args) {
        SpringApplication.run(JobAllowRestartJob.class, args);
    }
}

观察上面代码,很正常逻辑

第一次启动:step1 step2正常执行,整个Job 成功执行完成

第二次启动:不做任何改动时,再次启动job,没有报错,但是观察数据库表batch_job_execution 状态为 NOOP 无效执行,step1 step2 不会执行。

第三次启动:给step1 step2 添加上**.allowStartIfComplete(true)**, 再次启动,一切正常,并且可以无限启动

九、ItemReader

居于块操作的步骤由一个ItemReader,一个ItemProcessor和一个ItemWriter组成,一个负责读取数据,一个负责处理数据,一个负责输出数据,上一章节讲完步骤,接下来就重点讲解Spring Batch 输入组件:ItemReader

ItemReader 是Spring Batch 提供的输入组件,规范接口是ItemReader<T>, 里面有个read() 方法,我们可以实现该接口去定制输入逻辑。

public interface ItemReader<T> {
	@Nullable
	T read() throws Exception, UnexpectedInputException, ParseException, NonTransientResourceException;
}

Spring Batch 根据常用的输入类型,提供许多默认的实现,包括:平面文件、数据库、JMS资源和其他输入源等,接下来一起操作一下比较场景的输入场景。

9.1 读平面文件

平面文件一般指的都是简单行/多行结构的纯文本文件,比如记事本记录文件。与xml这种区别在于没有结构,没有标签的限制。Spring Batch默认使用 FlatFileItemReader 实现平面文件的输入。

9.1.1 方式1:delimited--字符串截取

需求:读取user.txt文件,解析出所有用户信息

user.txt

1#dafei#18
2#xiaofei#16
3#laofei#20
4#zhongfei#19
5#feifei#15

实体类

@Getter
@Setter
@ToString
public class User {
    private Long id;
    private String name;
    private int age;
}

实现作业

package com.langfeiyes.batch._21_itemreader_flat;

import com.langfeiyes.batch._20_job_restart_allow.JobAllowRestartJob;
import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.item.ItemWriter;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.builder.FlatFileItemReaderBuilder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.core.io.ClassPathResource;
import org.springframework.core.io.Resource;

import java.util.List;

@SpringBootApplication
@EnableBatchProcessing
public class FlatReaderJob {
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;

    @Bean
    public FlatFileItemReader<User> userItemReader(){
        return new FlatFileItemReaderBuilder<User>()
                .name("userItemReader")
            	.resource(new ClassPathResource("users.txt"))
                .delimited().delimiter("#")
                .names("id", "name", "age")
                .targetType(User.class)
                
                .build();
    }

    @Bean
    public ItemWriter<User> itemWriter(){
        return new ItemWriter<User>() {
            @Override
            public void write(List<? extends User> items) throws Exception {
                items.forEach(System.err::println);
            }
        };
    }

    @Bean
    public Step step(){
        return stepBuilderFactory.get("step1")
                .<User, User>chunk(1)
                .reader(userItemReader())
                .writer(itemWriter())
                .build();

    }

    @Bean
    public Job job(){
        return jobBuilderFactory.get("flat-reader-job")
                .start(step())
                .build();
    }
    public static void main(String[] args) {
        SpringApplication.run(FlatReaderJob.class, args);
    }
}

核心在userItemReader() 实例方法

//FlatFileItemReader spring batch 平面文件读入类
//这个类操作特点:一行一行的读数据
@Bean
public FlatFileItemReader<User> userItemReader(){
    return new FlatFileItemReaderBuilder<User>()
        .name("userItemReader")
        .resource(new ClassPathResource("users.txt"))  //指定读取的文件
        .delimited().delimiter("#")  //读取出一行数据,该如何分割数据,默认以,分割,当前使用#号分割
        .targetType(User.class)      //读取出一行数据封装成什么对象
        //给分割后数据打name标记,后续跟User对象属性进行映射
        .names("id", "name", "age")  
        .build();
}

除了上面讲到的核心方法,FlatFileItemReaderBuilder还提供.fieldSetMapper .lineTokenizer 2个方法,用于定制文件解析与数据映射。

9.1.2 方式2:FieldSetMapper--字段映射

FlatFileItemReaderBuilder 提供的方法,用于字段映射,方法参数是一个FieldSetMapper接口对象

public interface FieldSetMapper<T> {
	T mapFieldSet(FieldSet fieldSet) throws BindException;
}

FieldSet 字段集合,FlatFileItemReader 解析出一行数据,会将这行数据封装到FieldSet对象中。

我们用一个案例来解释一下FieldSetMapper 用法

编写users2.txt文件

1#dafei#18#广东#广州#天河区
2#xiaofei#16#四川#成都#武侯区
3#laofei#20#广西#桂林#雁山区
4#zhongfei#19#广东#广州#白云区
5#feifei#15#广东#广州#越秀区

用户对象

@Getter
@Setter
@ToString
public class User {
    private Long id;
    private String name;
    private int age;
    private String address;
}

观察,user2.txt文件中有 id name age province city area 按理用户对象属性应该一一对应,但是此时User只有address,也就是说,后续要将 province , city , area 合并成 address 地址值。此时怎么办?这是就需要自定义FieldSetMapper 啦。

public class UserFieldMapper implements FieldSetMapper<User> {
    @Override
    public User mapFieldSet(FieldSet fieldSet) throws BindException {

        //自己定义映射逻辑
        User User = new User();
        User.setId(fieldSet.readLong("id"));
        User.setAge(fieldSet.readInt("age"));
        User.setName(fieldSet.readString("name"));
        String addr = fieldSet.readString("province") + " "
                + fieldSet.readString("city") + " " + fieldSet.readString("area");
        User.setAddress(addr);
        return User;
    }
}

上面代码实现FieldSet与User对象映射,将province city area 合并成一个属性address。另外readXxx 是FieldSet 独有的方法,Xxx是java基本类型。

package com.langfeiyes.batch._22_itemreader_flat_mapper;

import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.item.ItemWriter;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.builder.FlatFileItemReaderBuilder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.core.io.ClassPathResource;

import java.util.List;

@SpringBootApplication
@EnableBatchProcessing
public class MapperFlatReaderJob {
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;

    @Bean
    public UserFieldMapper userFieldMapper(){
        return new UserFieldMapper();
    }


    @Bean
    public FlatFileItemReader<User> userItemReader(){
        return new FlatFileItemReaderBuilder<User>()
                .name("userMapperItemReader")
                .resource(new ClassPathResource("users2.txt"))
                .delimited().delimiter("#")
                .names("id", "name", "age", "province", "city", "area")
                .fieldSetMapper(userFieldMapper())
                .build();
    }

    @Bean
    public ItemWriter<User> itemWriter(){
        return new ItemWriter<User>() {
            @Override
            public void write(List<? extends User> items) throws Exception {
                items.forEach(System.err::println);
            }
        };
    }

    @Bean
    public Step step(){
        return stepBuilderFactory.get("step1")
                .<User, User>chunk(1)
                .reader(userItemReader())
                .writer(itemWriter())
                .build();

    }

    @Bean
    public Job job(){
        return jobBuilderFactory.get("mapper-flat-reader-job")
                .start(step())
                .build();
    }
    public static void main(String[] args) {
        SpringApplication.run(MapperFlatReaderJob.class, args);
    }
}

上面代码核心在userItemReader实例方法

.fieldSetMapper(userFieldMapper()) : 用上自定义的字段映射器

.names("id", "name", "age", "province", "city", "area") : users2.txt 每一行使用#分割出现6列,给每一列取名字,然后将其封装到FieldSet对象中

.targetType(User.class) : 注意,使用了fieldSetMapper 之后,不需要在加上这行

9.2 读JSON文件

Spring Batch 也提供专门操作Json文档的API : JsonItemReader,具体使用且看案例

需求:读取下面json格式文档

[
  {"id":1, "name":"dafei", "age":18},
  {"id":2, "name":"xiaofei", "age":17},
  {"id":3, "name":"zhongfei", "age":16},
  {"id":4, "name":"laofei", "age":15},
  {"id":5, "name":"feifei", "age":14}
]

封装成User对象

@Getter
@Setter
@ToString
public class User {
    private Long id;
    private String name;
    private int age;
}
package com.langfeiyes.batch._23_itemreader_flat_json;

import com.fasterxml.jackson.databind.ObjectMapper;
import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.item.ItemWriter;
import org.springframework.batch.item.json.JacksonJsonObjectReader;
import org.springframework.batch.item.json.JsonItemReader;
import org.springframework.batch.item.json.builder.JsonItemReaderBuilder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.core.io.ClassPathResource;

import java.util.List;

@SpringBootApplication
@EnableBatchProcessing
public class JsonFlatReaderJob {
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;


    @Bean
    public JsonItemReader<User> userItemReader(){

    	ObjectMapper objectMapper = new ObjectMapper();
    	JacksonJsonObjectReader<User> jsonObjectReader = new JacksonJsonObjectReader<>(User.class);
        jsonObjectReader.setMapper(objectMapper);

        return new JsonItemReaderBuilder<User>()
                .name("userJsonItemReader")
                .jsonObjectReader(jsonObjectReader)
                .resource(new ClassPathResource("users.json"))
            .build();
	}

    @Bean
    public ItemWriter<User> itemWriter(){
        return new ItemWriter<User>() {
            @Override
            public void write(List<? extends User> items) throws Exception {
                items.forEach(System.err::println);
            }
        };
    }

    @Bean
    public Step step(){
        return stepBuilderFactory.get("step1")
                .<User, User>chunk(1)
                .reader(userItemReader())
                .writer(itemWriter())
                .build();

    }

    @Bean
    public Job job(){
        return jobBuilderFactory.get("json-flat-reader-job")
                .start(step())
                .build();
    }
    public static void main(String[] args) {
        SpringApplication.run(JsonFlatReaderJob.class, args);
    }
}

上面代码核心在:userItemReader() 实例方法,明确指定转换成json格式需要使用转换器,本次使用的Jackson

9.3 读数据库

下面是一张用户表user, 如果数据是存放在数据库中,那么又该怎么读取?

CREATE TABLE `user` (
  `id` bigint NOT NULL AUTO_INCREMENT COMMENT '主键',
  `name` varchar(255) DEFAULT NULL COMMENT '用户名',
  `age` int DEFAULT NULL COMMENT '年龄',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=6 DEFAULT CHARSET=utf8mb3;
INSERT INTO `user` VALUES (1, 'dafei', 18);
INSERT INTO `user` VALUES (2, 'xiaofei', 17);
INSERT INTO `user` VALUES (3, 'zhongfei', 16);
INSERT INTO `user` VALUES (4, 'laofei', 15);
INSERT INTO `user` VALUES (5, 'feifei', 14);

Spring Batch 提供2种从数据库中读取数据的方式:

9.3.1 居于游标方式

image-20221205155534928

游标是数据库中概念,可以简单理解为一个指针

image-20221205152543915

游标遍历时,获取数据表中某一条数据,如果使用JDBC操作,游标指向的那条数据会被封装到ResultSet中,如果想将数据从ResultSet读取出来,需要借助Spring Batch 提供RowMapper 实现表数据与实体对象的映射。

user表数据---->User对象

Spring Batch JDBC 实现数据表读取需要做几个准备

1>实体对象User

@Getter
@Setter
@ToString
public class User {
    private Long id;
    private String name;
    private int age;
}

2>RowMapper 表与实体对象映射实现类

public class UserRowMapper implements RowMapper<User> {
    @Override
    public User mapRow(ResultSet rs, int rowNum) throws SQLException {
        User user = new User();
        user.setId(rs.getLong("id"));
        user.setName(rs.getString("name"));
        user.setAge(rs.getInt("age"));
        return user;
    }
}

3>JdbcCursorItemReader编写

package com.langfeiyes.batch._24_itemreader_db_cursor;

import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.item.ItemWriter;
import org.springframework.batch.item.database.JdbcCursorItemReader;
import org.springframework.batch.item.database.builder.JdbcCursorItemReaderBuilder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;

import javax.sql.DataSource;
import java.util.List;

@SpringBootApplication
@EnableBatchProcessing
public class CursorDBReaderJob {
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;

    @Autowired
    private DataSource dataSource;

    @Bean
    public UserRowMapper userRowMapper(){
        return new UserRowMapper();
    }

    @Bean
    public JdbcCursorItemReader<User> userItemReader(){

        return new JdbcCursorItemReaderBuilder<User>()
                .name("userCursorItemReader")
                .dataSource(dataSource)
                .sql("select * from user")
                .rowMapper(userRowMapper())
                .build();
	}

    @Bean
    public ItemWriter<User> itemWriter(){
        return new ItemWriter<User>() {
            @Override
            public void write(List<? extends User> items) throws Exception {
                items.forEach(System.err::println);
            }
        };
    }

    @Bean
    public Step step(){
        return stepBuilderFactory.get("step1")
                .<User, User>chunk(1)
                .reader(userItemReader())
                .writer(itemWriter())
                .build();

    }

    @Bean
    public Job job(){
        return jobBuilderFactory.get("cursor-db-reader-job")
                .start(step())
                .build();
    }
    public static void main(String[] args) {
        SpringApplication.run(CursorDBReaderJob.class, args);
    }
}

解析:

1>操作数据库,需要引入DataSource

2>留意userItemReader() 方法,需要明确指定操作数据库sql

3>留意userItemReader() 方法,需要明确指定游标回来之后,数据映射规则:rowMapper

这里要注意,如果sql需要where 条件,需要额外定义

比如: 查询 age > 16的用户

@Bean
public JdbcCursorItemReader<User> userItemReader(){

    return new JdbcCursorItemReaderBuilder<User>()
        .name("userCursorItemReader")
        .dataSource(dataSource)
        .sql("select * from user where age > ?")
        .rowMapper(userRowMapper())
        //拼接参数
        .preparedStatementSetter(new ArgumentPreparedStatementSetter(new Object[]{16}))
        .build();
}

9.3.2 居于分页方式

image-20221205155552416

游标的方式是查询出所有满足条件的数据,然后一条一条读取,而分页是按照指定设置的pageSize数,一次性读取pageSize条。

分页查询方式需要几个要素

1>实体对象,跟游标方式一样

2>RowMapper映射对象,跟游标方式一样

3>数据源,跟游标方式一样

4>PagingQueryProvider 分页逻辑提供者

package com.langfeiyes.batch._25_itemreader_db_page;


import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.item.ItemWriter;
import org.springframework.batch.item.database.JdbcCursorItemReader;
import org.springframework.batch.item.database.JdbcPagingItemReader;
import org.springframework.batch.item.database.PagingQueryProvider;
import org.springframework.batch.item.database.builder.JdbcCursorItemReaderBuilder;
import org.springframework.batch.item.database.builder.JdbcPagingItemReaderBuilder;
import org.springframework.batch.item.database.support.SqlPagingQueryProviderFactoryBean;
import org.springframework.batch.item.database.support.SqlitePagingQueryProvider;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.jdbc.core.ArgumentPreparedStatementSetter;

import javax.sql.DataSource;
import java.util.HashMap;
import java.util.List;

@SpringBootApplication
@EnableBatchProcessing
public class PageDBReaderJob {
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;

    @Autowired
    private DataSource dataSource;

    @Bean
    public UserRowMapper userRowMapper(){
        return new UserRowMapper();
    }


    @Bean
    public PagingQueryProvider pagingQueryProvider() throws Exception {
        SqlPagingQueryProviderFactoryBean factoryBean = new SqlPagingQueryProviderFactoryBean();
        factoryBean.setDataSource(dataSource);
        factoryBean.setSelectClause("select *");   //查询列
        factoryBean.setFromClause("from user");    //查询的表
        factoryBean.setWhereClause("where age > :age"); //where 条件
        factoryBean.setSortKey("id");   //结果排序
        return factoryBean.getObject();
    }

    @Bean
    public JdbcPagingItemReader<User> userItemReader() throws Exception {
        HashMap<String, Object> param = new HashMap<>();
        param.put("age", 16);
        return new JdbcPagingItemReaderBuilder<User>()
                .name("userPagingItemReader")
                .dataSource(dataSource)  //数据源
                .queryProvider(pagingQueryProvider())  //分页逻辑
                .parameterValues(param)   //条件
                .pageSize(10) //每页显示条数
                .rowMapper(userRowMapper())  //映射规则
                .build();
    }

    @Bean
    public ItemWriter<User> itemWriter(){
        return new ItemWriter<User>() {
            @Override
            public void write(List<? extends User> items) throws Exception {
                items.forEach(System.err::println);
            }
        };
    }

    @Bean
    public Step step() throws Exception {
        return stepBuilderFactory.get("step1")
                .<User, User>chunk(1)
                .reader(userItemReader())
                .writer(itemWriter())
                .build();

    }

    @Bean
    public Job job() throws Exception {
        return jobBuilderFactory.get("page-db-reader-job1")
                .start(step())
                .build();
    }
    public static void main(String[] args) {
        SpringApplication.run(PageDBReaderJob.class, args);
    }
}

解析:

1>需要提供pagingQueryProvider 用于拼接分页SQL

2>userItemReader() 组装分页查询逻辑。

9.4 读取异常

任何输入都有可能存在异常情况,那Spring Batch 如何应对输入异常情况呢? 3种操作逻辑:

1>跳过异常记录

这里逻辑是当Spring Batch 在读取数据时,根据各种意外情况抛出不同异常,ItemReader 可以按照约定跳过指定的异常,同时也可以限制跳过次数。

@Bean
public Step step() throws Exception {
    return stepBuilderFactory.get("step1")
        .<User, User>chunk(1)
        .reader(userItemReader())
        .writer(itemWriter())
        .faultTolerant() //容错
        .skip(Exception.class)  //跳过啥异常
        .noSkip(RuntimeException.class)  //不能跳过啥异常
        .skipLimit(10)  //跳过异常次数
        .skipPolicy(new SkipPolicy() {
            @Override
            public boolean shouldSkip(Throwable t, int skipCount) throws SkipLimitExceededException {
                //定制跳过异常与异常次数
                return false;
            }
        })
        .build();

}

如果出错直接跳过去,这操作有点自欺欺人,并不是优雅的解决方案。开发可选下面这种。

2>异常记录记日志

所谓记录日志,就是当ItemReader 读取数据抛出异常时,将具体数据信息记录下来,方便后续人工接入。

具体实现使用ItemReader监听器。

public class ErrorItemReaderListener implements ItemReadListener {
    @Override
    public void beforeRead() {

    }

    @Override
    public void afterRead(Object item) {

    }

    @Override
    public void onReadError(Exception ex) {
        System.out.println("记录读数据相关信息...");
    }
}

3>放弃处理

这种异常在处理不是很重要数据时候使用。

十、ItemProcessor

前面我们多次讲过,居于块的读与写,中间还夹着一个ItemProcessor 条目处理。当我们通过ItemReader 将数据读取出来之后,你面临2个选择:

1>直接将数据转向输出

2>对读入的数据进行再加工。

如果选择第一种,那ItemProcessor 可以不用出现,如果选择第二种,就需要引入ItemProcessor 条目处理组件啦。

Spring Batch 为Processor 提供默认的处理器与自定义处理器2种模式以满足各种需求。

10.1 默认ItemProcessor

Spring Batch 提供现成的ItemProcessor 组件有4种:

10.1.1 ValidatingItemProcessor:校验处理器

这个好理解,很多时候ItemReader读出来的数据是相对原始的数据,并没有做过多的校验

数据文件users-validate.txt

1##18
2##16
3#laofei#20
4#zhongfei#19
5#feifei#15

比如上面文本数据,第一条,第二条name数值没有指定,在ItemReader 读取之后,必定将 "" 空串封装到User name属性中,语法上没有错,但逻辑上可以做文章,比如:用户名不为空。

解决上述问题,可以使用Spring Batch 提供ValidatingItemProcessor 校验器处理。

接下来我们看下ValidatingItemProcessor 怎么实现

1>导入校验依赖

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-validation</artifactId>
</dependency>

2>定义实体对象

@Getter
@Setter
@ToString
public class User {
    private Long id;
    @NotBlank(message = "用户名不能为null或空串")
    private String name;
    private int age;
}

3>实现

package com.langfeiyes.batch._26_itemprocessor_validate;

import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.item.ItemWriter;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.builder.FlatFileItemReaderBuilder;
import org.springframework.batch.item.validator.BeanValidatingItemProcessor;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.core.io.ClassPathResource;
import org.springframework.util.StringUtils;

import java.util.List;

@SpringBootApplication
@EnableBatchProcessing
public class ValidationProcessorJob {
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;


    @Bean
    public FlatFileItemReader<User> userItemReader(){
        return new FlatFileItemReaderBuilder<User>()
                .name("userItemReader")
                .resource(new ClassPathResource("users-validate.txt"))
                .delimited().delimiter("#")
                .names("id", "name", "age")
                .targetType(User.class)
                .build();
    }

    @Bean
    public ItemWriter<User> itemWriter(){
        return new ItemWriter<User>() {
            @Override
            public void write(List<? extends User> items) throws Exception {
                items.forEach(System.err::println);
            }
        };
    }


    @Bean
    public BeanValidatingItemProcessor<User> beanValidatingItemProcessor(){
        BeanValidatingItemProcessor<User> beanValidatingItemProcessor = new BeanValidatingItemProcessor<>();
        beanValidatingItemProcessor.setFilter(true);  //不满足条件丢弃数据

        return beanValidatingItemProcessor;
    }


    @Bean
    public Step step(){
        return stepBuilderFactory.get("step1")
                .<User, User>chunk(1)
                .reader(userItemReader())
                .processor(beanValidatingItemProcessor())
                .writer(itemWriter())
                .build();

    }

    @Bean
    public Job job(){
        return jobBuilderFactory.get("validate-processor-job4")
                .start(step())
                .build();
    }
    public static void main(String[] args) {
        SpringApplication.run(ValidationProcessorJob.class, args);
    }
}

解析:

1>核心是beanValidatingItemProcessor() 实例方法,核心BeanValidatingItemProcessor 类是Spring Batch 提供现成的Validator校验类,这里直接使用即可。BeanValidatingItemProcessor 是 ValidatingItemProcessor 子类

2> step()实例方法,多了**.processor(beanValidatingItemProcessor())** 操作,引入ItemProcessor 组件。

10.1.2 ItemProcessorAdapter:适配器处理器

开发中,很多的校验逻辑已经有现成的啦,那做ItemProcessor处理时候,是否能使用现成逻辑呢?答案 是:yes

比如:现有处理逻辑:将User对象中name转换成大写

public class UserServiceImpl{
    public User toUppeCase(User user){
        user.setName(user.getName().toUpperCase());
        return user;
    }
}

新建users-adapter.txt 文件,用于测试

1#dafei#18
2#xiaofei#16
3#laofei#20
4#zhongfei#19
5#feifei#15

完整的逻辑

package com.langfeiyes.batch._27_itemprocessor_adapter;

import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.item.ItemWriter;
import org.springframework.batch.item.adapter.ItemProcessorAdapter;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.builder.FlatFileItemReaderBuilder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.core.io.ClassPathResource;

import java.util.List;

@SpringBootApplication
@EnableBatchProcessing
public class AdapterProcessorJob {
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;


    @Bean
    public FlatFileItemReader<User> userItemReader(){
        return new FlatFileItemReaderBuilder<User>()
                .name("userItemReader")
                .resource(new ClassPathResource("users-adapter.txt"))
                .delimited().delimiter("#")
                .names("id", "name", "age")
                .targetType(User.class)
                .build();
    }

    @Bean
    public ItemWriter<User> itemWriter(){
        return new ItemWriter<User>() {
            @Override
            public void write(List<? extends User> items) throws Exception {
                items.forEach(System.err::println);
            }
        };
    }
    @Bean
    public UserServiceImpl userService(){
        return new UserServiceImpl();
    }
    @Bean
    public ItemProcessorAdapter<User, User> itemProcessorAdapter(){
        ItemProcessorAdapter<User, User> adapter = new ItemProcessorAdapter<>();
        adapter.setTargetObject(userService());
        adapter.setTargetMethod("toUppeCase");

        return adapter;
    }

    @Bean
    public Step step(){
        return stepBuilderFactory.get("step1")
                .<User, User>chunk(1)
                .reader(userItemReader())
                .processor(itemProcessorAdapter())
                .writer(itemWriter())
                .build();

    }
    @Bean
    public Job job(){
        return jobBuilderFactory.get("adapter-processor-job")
                .start(step())
                .build();
    }
    public static void main(String[] args) {
        SpringApplication.run(AdapterProcessorJob.class, args);
    }
}

解析:

观察itemProcessorAdapter()实例方法,引入ItemProcessorAdapter 适配器类,绑定自定义的UserServiceImpl 类与toUppeCase方法,当ItemReader 读完之后,马上调用UserServiceImpl 类的toUppeCase 方法处理逻辑。方法传参数会被忽略,ItemProcessor会自动处理。

10.1.3 ScriptItemProcessor:脚本处理器

前面要实现User name 变大写,需要大费周折,又定义类,又是定义方法,能不能简化一点。答案也是yes, Spring Batch 提供js脚本的形式,将上面逻辑写到js文件中,加载这文件,就可以实现,省去定义类,定义方法的麻烦。

需求:使用js脚本方式实现用户名大写处理

userScript.js

item.setName(item.getName().toUpperCase());
item;

这里注意:

1>item是约定的单词,表示ItemReader读除来每个条目

2>userScript.js文件放置到resource资源文件中

完整代码

package com.langfeiyes.batch._28_itemprocessor_script;

import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.item.ItemWriter;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.builder.FlatFileItemReaderBuilder;
import org.springframework.batch.item.support.ScriptItemProcessor;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.core.io.ClassPathResource;

import java.util.List;

@SpringBootApplication
@EnableBatchProcessing
public class ScriptProcessorJob {
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;


    @Bean
    public FlatFileItemReader<User> userItemReader(){
        return new FlatFileItemReaderBuilder<User>()
                .name("userItemReader")
                .resource(new ClassPathResource("users-adapter.txt"))
                .delimited().delimiter("#")
                .names("id", "name", "age")
                .targetType(User.class)
                .build();
    }

    @Bean
    public ItemWriter<User> itemWriter(){
        return new ItemWriter<User>() {
            @Override
            public void write(List<? extends User> items) throws Exception {
                items.forEach(System.err::println);
            }
        };
    }


    @Bean
    public ScriptItemProcessor<User, User> scriptItemProcessor(){
        ScriptItemProcessor<User, User> scriptItemProcessor = new ScriptItemProcessor();
        scriptItemProcessor.setScript(new ClassPathResource("userScript.js"));
        return scriptItemProcessor;
    }

    @Bean
    public Step step(){
        return stepBuilderFactory.get("step1")
                .<User, User>chunk(1)
                .reader(userItemReader())
                .processor(scriptItemProcessor())
                .writer(itemWriter())
                .build();

    }

    @Bean
    public Job job(){
        return jobBuilderFactory.get("script-processor-job")
                .start(step())
                .build();
    }
    public static void main(String[] args) {
        SpringApplication.run(ScriptProcessorJob.class, args);
    }
}

解析:

核心还是scriptItemProcessor() 实例方法,ScriptItemProcessor 类用于加载js 脚本并处理js脚本。

10.1.4 CompositeItemProcessor:组合处理器

CompositeItemProcessor是一个ItemProcessor处理组合,类似于过滤器链,数据先经过第一个处理器,然后再经过第二个处理器,直到最后。前一个处理器处理的结果,是后一个处理器的输出。

image-20221206120116269

需求:将解析出来用户name进行判空处理,并将name属性转换成大写

1>读取文件:users-validate.txt

1##18
2##16
3#laofei#20
4#zhongfei#19
5#feifei#15

2>封装的实体对象

@Getter
@Setter
@ToString
public class User {
    private Long id;
    @NotBlank(message = "用户名不能为null或空串")
    private String name;
    private int age;
}

3>用于转换大写工具类

public class UserServiceImpl {
    public User toUppeCase(User user){
        user.setName(user.getName().toUpperCase());
        return user;
    }
}

4>完整代码

package com.langfeiyes.batch._29_itemprocessor_composite;

import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.item.ItemWriter;
import org.springframework.batch.item.adapter.ItemProcessorAdapter;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.builder.FlatFileItemReaderBuilder;
import org.springframework.batch.item.support.CompositeItemProcessor;
import org.springframework.batch.item.validator.BeanValidatingItemProcessor;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.core.io.ClassPathResource;

import java.util.Arrays;
import java.util.List;

@SpringBootApplication
@EnableBatchProcessing
public class CompositeProcessorJob {
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;


    @Bean
    public FlatFileItemReader<User> userItemReader(){
        return new FlatFileItemReaderBuilder<User>()
                .name("userItemReader")
                .resource(new ClassPathResource("users-validate.txt"))
                .delimited().delimiter("#")
                .names("id", "name", "age")
                .targetType(User.class)
                .build();
    }

    @Bean
    public ItemWriter<User> itemWriter(){
        return new ItemWriter<User>() {
            @Override
            public void write(List<? extends User> items) throws Exception {
                items.forEach(System.err::println);
            }
        };
    }

    @Bean
    public UserServiceImpl userService(){
        return new UserServiceImpl();
    }
    @Bean
    public BeanValidatingItemProcessor<User> beanValidatingItemProcessor(){
        BeanValidatingItemProcessor<User> beanValidatingItemProcessor = new BeanValidatingItemProcessor<>();
        beanValidatingItemProcessor.setFilter(true);  //不满足条件丢弃数据
        return beanValidatingItemProcessor;
    }

    @Bean
    public ItemProcessorAdapter<User, User> itemProcessorAdapter(){
        ItemProcessorAdapter<User, User> adapter = new ItemProcessorAdapter<>();
        adapter.setTargetObject(userService());
        adapter.setTargetMethod("toUppeCase");

        return adapter;
    }

    @Bean
    public CompositeItemProcessor<User, User>  compositeItemProcessor(){
        CompositeItemProcessor<User, User> compositeItemProcessor = new CompositeItemProcessor<>();
        compositeItemProcessor.setDelegates(Arrays.asList(
                beanValidatingItemProcessor(), itemProcessorAdapter()
        ));
        return  compositeItemProcessor;
    }

    @Bean
    public Step step(){
        return stepBuilderFactory.get("step1")
                .<User, User>chunk(1)
                .reader(userItemReader())
                .processor(compositeItemProcessor())
                .writer(itemWriter())
                .build();

    }

    @Bean
    public Job job(){
        return jobBuilderFactory.get("composite-processor-job")
                .start(step())
                .build();
    }
    public static void main(String[] args) {
        SpringApplication.run(CompositeProcessorJob.class, args);
    }
}

解析:

核心代码:compositeItemProcessor() 实例方法,使用setDelegates 操作将其他ItemProcessor 处理合并成一个。

10.2 自定义ItemProcessor处理器

除去上面默认的几种处理器外,Spring Batch 也允许我们自定义,具体做法只需要实现ItemProcessor接口即可

需求:自定义处理器,筛选出id为偶数的用户

1>定义读取文件user.txt

1#dafei#18
2#xiaofei#16
3#laofei#20
4#zhongfei#19
5#feifei#15

2>定义实体对象

@Getter
@Setter
@ToString
public class User {
    private Long id;
    private String name;
    private int age;
}

3>自定义处理器

//自定义
public class CustomizeItemProcessor implements ItemProcessor<User,User> {
    @Override
    public User process(User item) throws Exception {
        //id 为偶数的用户放弃
        //返回null时候 读入的item会被放弃,不会进入itemwriter
        return item.getId() % 2 != 0 ? item : null;
    }
}

4>完整代码

package com.langfeiyes.batch._30_itemprocessor_customize;

import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.item.ItemWriter;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.builder.FlatFileItemReaderBuilder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.core.io.ClassPathResource;

import java.util.List;

@SpringBootApplication
@EnableBatchProcessing
public class CustomizeProcessorJob {
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;


    @Bean
    public FlatFileItemReader<User> userItemReader(){
        return new FlatFileItemReaderBuilder<User>()
                .name("userItemReader")
                .resource(new ClassPathResource("users.txt"))
                .delimited().delimiter("#")
                .names("id", "name", "age")
                .targetType(User.class)
                .build();
    }

    @Bean
    public ItemWriter<User> itemWriter(){
        return new ItemWriter<User>() {
            @Override
            public void write(List<? extends User> items) throws Exception {
                items.forEach(System.err::println);
            }
        };
    }
    @Bean
    public CustomizeItemProcessor customizeItemProcessor(){
        return new CustomizeItemProcessor();
    }

    @Bean
    public Step step(){
        return stepBuilderFactory.get("step1")
                .<User, User>chunk(1)
                .reader(userItemReader())
                .processor(customizeItemProcessor())
                .writer(itemWriter())
                .build();

    }
    @Bean
    public Job job(){
        return jobBuilderFactory.get("customize-processor-job")
                .start(step())
                .build();
    }
    public static void main(String[] args) {
        SpringApplication.run(CustomizeProcessorJob.class, args);
    }
}

十一、ItemWriter

有输入那肯定有输出,前面讲了输入ItemReader,接下来就看本篇的输出器:ItemWriter, Spring Batch提供的数据输出组件与数据输入组件是成对,也就是说有啥样子的输入组件,就有啥样子的输出组件。

11.1 输出平面文件

当将读入的数据输出到纯文本文件时,可以通过FlatFileItemWriter 输出器实现。

需求:将user.txt中数据读取出来,输出到outUser.txt文件中

1>定义user.txt文件

1#dafei#18
2#xiaofei#16
3#laofei#20
4#zhongfei#19
5#feifei#15

2>定义实体对象

@Getter
@Setter
@ToString
public class User {
    private Long id;
    private String name;
    private int age;
}

3>实现代码

package com.langfeiyes.batch._31_itemwriter_flat;


import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.FlatFileItemWriter;
import org.springframework.batch.item.file.builder.FlatFileItemReaderBuilder;
import org.springframework.batch.item.file.builder.FlatFileItemWriterBuilder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.core.io.ClassPathResource;
import org.springframework.core.io.PathResource;

import java.util.List;

@SpringBootApplication
@EnableBatchProcessing
public class FlatWriteJob {
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;

    @Bean
    public FlatFileItemReader<User> userItemReader(){
        return new FlatFileItemReaderBuilder<User>()
                .name("userItemReader")
                .resource(new ClassPathResource("users.txt"))
                .delimited().delimiter("#")
                .names("id", "name", "age")
                .targetType(User.class)
                .build();
    }

    @Bean
    public FlatFileItemWriter<User> itemWriter(){
        return new FlatFileItemWriterBuilder<User>()
                .name("userItemWriter")
                .resource(new PathResource("c:/outUser.txt"))  //输出的文件
                .formatted()  //数据格式指定
                .format("id: %s,姓名:%s,年龄:%s")  //输出数据格式
                .names("id", "name", "age")  //需要输出属性
                .build();
    }

    @Bean
    public Step step(){
        return stepBuilderFactory.get("step1")
                .<User, User>chunk(1)
                .reader(userItemReader())
                .writer(itemWriter())
                .build();

    }

    @Bean
    public Job job(){
        return jobBuilderFactory.get("flat-writer-job")
                .start(step())
                .build();
    }
    public static void main(String[] args) {
        SpringApplication.run(FlatWriteJob.class, args);
    }
}

解析:

上面代码核心是itemWriter() 方法,设置到itemWrite读取器配置与输出

id: 1,姓名:dafei,年龄:18
id: 2,姓名:xiaofei,年龄:16
id: 3,姓名:laofei,年龄:20
id: 4,姓名:zhongfei,年龄:19
id: 5,姓名:feifei,年龄:15

一些拓展

@Bean
public FlatFileItemWriter<User> itemWriter(){
    return new FlatFileItemWriterBuilder<User>()
        .name("userItemWriter")
        .resource(new PathResource("c:/outUser.txt"))  //输出的文件
        .formatted()  //数据格式指定
        .format("id: %s,姓名:%s,年龄:%s")  //输出数据格式
        .names("id", "name", "age")  //需要输出属性
        .shouldDeleteIfEmpty(true)   //如果读入数据为空,输出时创建文件直接删除
        .shouldDeleteIfExists(true) //如果输出文件已经存在,则删除
        .append(true)  //如果输出文件已经存在, 不删除,直接追加到现有文件中
        .build();
}

11.2 输出Json文件

当将读入的数据输出到Json文件时,可以通过JsonFileItemWriter输出器实现。

需求:将user.txt中数据读取出来,输出到outUser.json文件中

沿用上面的user.txt, user对象将数据输出到outUser.json

package com.langfeiyes.batch._32_itemwriter_json;

import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.FlatFileItemWriter;
import org.springframework.batch.item.file.builder.FlatFileItemReaderBuilder;
import org.springframework.batch.item.file.builder.FlatFileItemWriterBuilder;
import org.springframework.batch.item.json.JacksonJsonObjectMarshaller;
import org.springframework.batch.item.json.JsonFileItemWriter;
import org.springframework.batch.item.json.builder.JsonFileItemWriterBuilder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.core.io.ClassPathResource;
import org.springframework.core.io.PathResource;

@SpringBootApplication
@EnableBatchProcessing
public class JsonWriteJob {
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;

    @Bean
    public FlatFileItemReader<User> userItemReader(){
        return new FlatFileItemReaderBuilder<User>()
                .name("userItemReader")
                .resource(new ClassPathResource("users.txt"))
                .delimited().delimiter("#")
                .names("id", "name", "age")
                .targetType(User.class)
                .build();
    }


    @Bean
    public JacksonJsonObjectMarshaller<User> objectMarshaller(){
        JacksonJsonObjectMarshaller marshaller = new JacksonJsonObjectMarshaller();
        return marshaller;
    }

    @Bean
    public JsonFileItemWriter<User> itemWriter(){
        return new JsonFileItemWriterBuilder<User>()
                .name("jsonUserItemWriter")
                .resource(new PathResource("c:/outUser.json"))
                .jsonObjectMarshaller(objectMarshaller())
                .build();
    }


    @Bean
    public Step step(){
        return stepBuilderFactory.get("step1")
                .<User, User>chunk(1)
                .reader(userItemReader())
                .writer(itemWriter())
                .build();

    }

    @Bean
    public Job job(){
        return jobBuilderFactory.get("json-writer-job")
                .start(step())
                .build();
    }
    public static void main(String[] args) {
        SpringApplication.run(JsonWriteJob.class, args);
    }
}

结果:

[
 {"id":1,"name":"dafei","age":18},
 {"id":2,"name":"xiaofei","age":16},
 {"id":3,"name":"laofei","age":20},
 {"id":4,"name":"zhongfei","age":19},
 {"id":5,"name":"feifei","age":15}
]

解析:

1>itemWriter() 实例方法构建JsonFileItemWriter 实例,需要明确指定Json格式装配器

2>Spring Batch默认提供装配器有2个:JacksonJsonObjectMarshaller GsonJsonObjectMarshaller 分别对应Jackson 跟 Gson 2种json格式解析逻辑,本案例用的是Jackson

11.3 输出数据库

当将读入的数据需要输出到数据库时,可以通过JdbcBatchItemWriter输出器实现。

需求:将user.txt中数据读取出来,输出到数据库user表中

沿用上面的user.txt, user对象将数据输出到user表中

1>定义操作数据库预编译类

//写入数据库需要操作insert sql, 使用预编译就需要明确指定参数值
public class UserPreStatementSetter implements ItemPreparedStatementSetter<User> {
    @Override
    public void setValues(User item, PreparedStatement ps) throws SQLException {
        ps.setLong(1, item.getId());
        ps.setString(2, item.getName());
        ps.setInt(3, item.getAge());
    }
}

2>完整代码

package com.langfeiyes.batch._33_itemwriter_db;

import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.item.database.JdbcBatchItemWriter;
import org.springframework.batch.item.database.builder.JdbcBatchItemWriterBuilder;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.builder.FlatFileItemReaderBuilder;
import org.springframework.batch.item.json.JacksonJsonObjectMarshaller;
import org.springframework.batch.item.json.JsonFileItemWriter;
import org.springframework.batch.item.json.builder.JsonFileItemWriterBuilder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.core.io.ClassPathResource;
import org.springframework.core.io.PathResource;

import javax.sql.DataSource;

@SpringBootApplication
@EnableBatchProcessing
public class JdbcWriteJob {
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;

    @Autowired
    private DataSource dataSource;

    @Bean
    public FlatFileItemReader<User> userItemReader(){
        return new FlatFileItemReaderBuilder<User>()
                .name("userItemReader")
                .resource(new ClassPathResource("users.txt"))
                .delimited().delimiter("#")
                .names("id", "name", "age")
                .targetType(User.class)
                .build();
    }
    @Bean
    public UserPreStatementSetter preStatementSetter(){
        return new UserPreStatementSetter();
    }
    @Bean
    public JdbcBatchItemWriter<User>  itemWriter(){
        return new JdbcBatchItemWriterBuilder<User>()
                .dataSource(dataSource)
                .sql("insert into user(id, name, age) values(?,?,?)")
                .itemPreparedStatementSetter(preStatementSetter())
                .build();
    }
    @Bean
    public Step step(){
        return stepBuilderFactory.get("step1")
                .<User, User>chunk(1)
                .reader(userItemReader())
                .writer(itemWriter())
                .build();
    }

    @Bean
    public Job job(){
        return jobBuilderFactory.get("jdbc-writer-job")
                .start(step())
                .build();
    }
    public static void main(String[] args) {
        SpringApplication.run(JdbcWriteJob.class, args);
    }
}

解析:

核心代码在itemWriter() 实例方法中, 需要1>准备构建JdbcBatchItemWriter实例 2>提前准备数据, 3>准备sql语句 4>准备参数绑定器

11.4 输出多终端

上面几种输出方法都是一对一,真实开发可能没那么简单了,可能存在一对多,多个终端输出,此时怎么办?答案是使用Spring Batch 提供的CompositeItemWriter 组合输出器。

需求:将user.txt中数据读取出来,输出到outUser.txt/outUser.json/数据库user表中

沿用上面的user.txt, user对象将数据输出到outUser.txt/outUser.json/user表中

package com.langfeiyes.batch._34_itemwriter_composite;

import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.item.database.JdbcBatchItemWriter;
import org.springframework.batch.item.database.builder.JdbcBatchItemWriterBuilder;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.FlatFileItemWriter;
import org.springframework.batch.item.file.builder.FlatFileItemReaderBuilder;
import org.springframework.batch.item.file.builder.FlatFileItemWriterBuilder;
import org.springframework.batch.item.json.JacksonJsonObjectMarshaller;
import org.springframework.batch.item.json.JsonFileItemWriter;
import org.springframework.batch.item.json.builder.JsonFileItemWriterBuilder;
import org.springframework.batch.item.support.CompositeItemWriter;
import org.springframework.batch.item.support.builder.CompositeItemWriterBuilder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.core.io.ClassPathResource;
import org.springframework.core.io.PathResource;

import javax.sql.DataSource;
import java.util.Arrays;

@SpringBootApplication
@EnableBatchProcessing
public class CompositeWriteJob {
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;

    @Autowired
    public DataSource dataSource;

    @Bean
    public FlatFileItemReader<User> userItemReader(){
        return new FlatFileItemReaderBuilder<User>()
                .name("userItemReader")
                .resource(new ClassPathResource("users.txt"))
                .delimited().delimiter("#")
                .names("id", "name", "age")
                .targetType(User.class)
                .build();
    }

    @Bean
    public FlatFileItemWriter<User> flatFileItemWriter(){
        return new FlatFileItemWriterBuilder<User>()
                .name("userItemWriter")
                .resource(new PathResource("c:/outUser.txt"))
                .formatted()  //数据格式指定
                .format("id: %s,姓名:%s,年龄:%s")  //输出数据格式
                .names("id", "name", "age")  //需要输出属性
                .build();
    }

    @Bean
    public JacksonJsonObjectMarshaller<User> objectMarshaller(){
        JacksonJsonObjectMarshaller marshaller = new JacksonJsonObjectMarshaller();
        return marshaller;
    }

    @Bean
    public JsonFileItemWriter<User> jsonFileItemWriter(){
        return new JsonFileItemWriterBuilder<User>()
                .name("jsonUserItemWriter")
                .resource(new PathResource("c:/outUser.json"))
                .jsonObjectMarshaller(objectMarshaller())
                .build();
    }

    @Bean
    public UserPreStatementSetter preStatementSetter(){
        return new UserPreStatementSetter();
    }


    @Bean
    public JdbcBatchItemWriter<User> jdbcBatchItemWriter(){
        return new JdbcBatchItemWriterBuilder<User>()
                .dataSource(dataSource)
                .sql("insert into user(id, name, age) values(?,?,?)")
                .itemPreparedStatementSetter(preStatementSetter())
                .build();
    }

    @Bean
    public CompositeItemWriter<User> compositeItemWriter(){
        return new CompositeItemWriterBuilder<User>()
                .delegates(Arrays.asList(flatFileItemWriter(), jsonFileItemWriter(), jdbcBatchItemWriter()))
                .build();
    }


    @Bean
    public Step step(){
        return stepBuilderFactory.get("step1")
                .<User, User>chunk(1)
                .reader(userItemReader())
                .writer(compositeItemWriter())
                .build();

    }

    @Bean
    public Job job(){
        return jobBuilderFactory.get("composite-writer-job")
                .start(step())
                .build();
    }
    public static void main(String[] args) {
        SpringApplication.run(CompositeWriteJob.class, args);
    }
}

解析:

代码没有啥技术难度,都是将前面的几种方式通过CompositeItemWriter 类整合在一起

@Bean
public CompositeItemWriter<User> compositeItemWriter(){
    return new CompositeItemWriterBuilder<User>()
        .delegates(Arrays.asList(flatFileItemWriter(), jsonFileItemWriter(), jdbcBatchItemWriter()))
        .build();
}

十二、Spring Batch 高级

前面讲的Spring Batch 基本上能满足日常批处理了,下面则是Spring Batch 高级部分内容,大家可以自己选择了解。

12.1 多线程步骤

默认的情况下,步骤基本上在单线程中执行,那能不能在多线程环境执行呢?答案肯定是yes,但是也要注意,多线程环境步骤执行一定要慎重。原因:多线程环境下,步骤是要设置不可重启

Spring Batch 的多线程步骤是使用Spring 的 TaskExecutor(任务执行器)实现的。约定每一个块开启一个线程独立执行。

image-20221207161556238

需求:分5个块处理user-thread.txt文件

1>编写user-thread.txt文件

1#dafei#18
2#xiaofei#16
3#laofei#20
4#zhongfei#19
5#feifei#15
6#zhangsan#14
7#lisi#13
8#wangwu#12
9#zhaoliu#11
10#qianqi#10

2>定义实体对象

@Getter
@Setter
@ToString
public class User {
    private Long id;
    private String name;
    private int age;
}

3>完整代码

package com.langfeiyes.batch._35_step_thread;


import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.item.ItemWriter;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.builder.FlatFileItemReaderBuilder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.core.io.ClassPathResource;
import org.springframework.core.task.SimpleAsyncTaskExecutor;

import java.util.List;

@SpringBootApplication
@EnableBatchProcessing
public class ThreadStepJob {
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;

    @Bean
    public FlatFileItemReader<User> userItemReader(){

        System.out.println(Thread.currentThread());

        FlatFileItemReader<User> reader = new FlatFileItemReaderBuilder<User>()
                .name("userItemReader")
                .saveState(false) //防止状态被覆盖
                .resource(new ClassPathResource("user-thread.txt"))
                .delimited().delimiter("#")
                .names("id", "name", "age")
                .targetType(User.class)
                .build();

        return reader;
    }

    @Bean
    public ItemWriter<User> itemWriter(){
        return new ItemWriter<User>() {
            @Override
            public void write(List<? extends User> items) throws Exception {
                items.forEach(System.err::println);
            }
        };
    }

    @Bean
    public Step step(){
        return stepBuilderFactory.get("step1")
                .<User, User>chunk(2)
                .reader(userItemReader())
                .writer(itemWriter())
                .taskExecutor(new SimpleAsyncTaskExecutor())
                .build();

    }

    @Bean
    public Job job(){
        return jobBuilderFactory.get("thread-step-job")
                .start(step())
                .build();
    }
    public static void main(String[] args) {
        SpringApplication.run(ThreadStepJob.class, args);
    }
}

4>结果

User(id=2, name=xiaofei, age=16)
User(id=5, name=feifei, age=15)
User(id=4, name=zhongfei, age=19)
User(id=7, name=lisi, age=13)
User(id=1, name=dafei, age=18)
User(id=6, name=zhangsan, age=14)
User(id=3, name=laofei, age=20)
User(id=8, name=wangwu, age=12)
User(id=9, name=zhaoliu, age=11)
User(id=10, name=qianqi, age=10)

解析

1:userItemReader() 加上saveState(false) Spring Batch 提供大部分的ItemReader是有状态的,作业重启基本通过状态来确定作业停止位置,而在多线程环境中,如果对象维护状态被多个线程访问,可能存在线程间状态相互覆盖问题。所以设置为false表示关闭状态,但这也意味着作业不能重启了。

2:step() 方法加上**.taskExecutor(new SimpleAsyncTaskExecutor())** 为作业步骤添加了多线程处理能力,以块为单位,一个块一个线程,观察上面的结果,很明显能看出输出的顺序是乱序的。改变 job 的名字再执行,会发现输出数据每次都不一样。

12.2 并行步骤

并行步骤,指的是某2个或者多个步骤同时执行。比如下图

image-20221207171233826

图中,流程从步骤1执行,然后执行步骤2, 步骤3,当步骤2/3执行结束之后,在执行步骤4.

设想一种场景,当读取2个或者多个互不关联的文件时,可以多个文件同时读取,这个就是并行步骤。

需求:现有user-parallel.txt, user-parallel.json 2个文件将它们中数据读入内存

1>编写user-parallel.txt, user-parallel.json

6#zhangsan#14
7#lisi#13
8#wangwu#12
9#zhaoliu#11
10#qianqi#10
[
  {"id":1, "name":"dafei", "age":18},
  {"id":2, "name":"xiaofei", "age":17},
  {"id":3, "name":"zhongfei", "age":16},
  {"id":4, "name":"laofei", "age":15},
  {"id":5, "name":"feifei", "age":14}
]

2>编写实体对象

@Getter
@Setter
@ToString
public class User {
    private Long id;
    private String name;
    private int age;
}

3>代码实现

package com.langfeiyes.batch._36_step_parallel;


import com.fasterxml.jackson.databind.ObjectMapper;
import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.core.job.builder.FlowBuilder;
import org.springframework.batch.core.job.flow.Flow;
import org.springframework.batch.item.ItemWriter;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.builder.FlatFileItemReaderBuilder;
import org.springframework.batch.item.json.JacksonJsonObjectReader;
import org.springframework.batch.item.json.JsonItemReader;
import org.springframework.batch.item.json.builder.JsonItemReaderBuilder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.core.io.ClassPathResource;
import org.springframework.core.task.SimpleAsyncTaskExecutor;

import java.util.List;

@SpringBootApplication
@EnableBatchProcessing
public class ParallelStepJob {
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;


    @Bean
    public JsonItemReader<User> jsonItemReader(){
        ObjectMapper objectMapper = new ObjectMapper();
        JacksonJsonObjectReader<User> jsonObjectReader = new JacksonJsonObjectReader<>(User.class);
        jsonObjectReader.setMapper(objectMapper);

        return new JsonItemReaderBuilder<User>()
                .name("userJsonItemReader")
                .jsonObjectReader(jsonObjectReader)
                .resource(new ClassPathResource("user-parallel.json"))
                .build();
    }

    @Bean
    public FlatFileItemReader<User> flatItemReader(){
        return new FlatFileItemReaderBuilder<User>()
                .name("userItemReader")
                .resource(new ClassPathResource("user-parallel.txt"))
                .delimited().delimiter("#")
                .names("id", "name", "age")
                .targetType(User.class)
                .build();
    }
    @Bean
    public ItemWriter<User> itemWriter(){
        return new ItemWriter<User>() {
            @Override
            public void write(List<? extends User> items) throws Exception {
                items.forEach(System.err::println);
            }
        };
    }

    @Bean
    public Step jsonStep(){
        return stepBuilderFactory.get("jsonStep")
                .<User, User>chunk(2)
                .reader(jsonItemReader())
                .writer(itemWriter())
                .build();
    }

    @Bean
    public Step flatStep(){
        return stepBuilderFactory.get("step2")
                .<User, User>chunk(2)
                .reader(flatItemReader())
                .writer(itemWriter())
                .build();
    }

    @Bean
    public Job parallelJob(){

        //线程1-读user-parallel.txt
        Flow parallelFlow1 = new FlowBuilder<Flow>("parallelFlow1")
                .start(flatStep())
                .build();

        //线程2-读user-parallel.json
        Flow parallelFlow2 = new FlowBuilder<Flow>("parallelFlow2")
                .start(jsonStep())
                .split(new SimpleAsyncTaskExecutor())
                .add(parallelFlow1)
                .build();


        return jobBuilderFactory.get("parallel-step-job")
                .start(parallelFlow2)
                .end()
                .build();
    }
    public static void main(String[] args) {
        SpringApplication.run(ParallelStepJob.class, args);
    }
}

结果

User(id=6, name=zhangsan, age=14)
User(id=7, name=lisi, age=13)
User(id=8, name=wangwu, age=12)
User(id=9, name=zhaoliu, age=11)
User(id=1, name=dafei, age=18)
User(id=2, name=xiaofei, age=17)
User(id=10, name=qianqi, age=10)
User(id=3, name=zhongfei, age=16)
User(id=4, name=laofei, age=15)
User(id=5, name=feifei, age=14)

解析:

1:jsonItemReader() flatItemReader() 定义2个读入操作,分别读json格式跟普通文本格式

2:parallelJob() 配置job,需要指定并行的flow步骤,先是parallelFlow1然后是parallelFlow2 , 2个步骤间使用**.split(new SimpleAsyncTaskExecutor())** 隔开,表示线程池开启2个线程,分别处理parallelFlow1, parallelFlow2 2个步骤。

12.3 分区步骤

分区:有划分,区分意思,在SpringBatch 分区步骤讲的是给执行步骤区分上下级。

上级: 主步骤(Master Step)

下级: 从步骤--工作步骤(Work Step)

主步骤是领导,不用干活,负责管理从步骤,从步骤是下属,必须干活。

一个主步骤下辖管理多个从步骤。

注意: 从步骤,不管多小,它也一个完整的Spring Batch 步骤,负责各自的读入、处理、写入等。

分区步骤结构图

image-20221207172733375

分区步骤一般用于海量数据的处理上,其采用是分治思想。主步骤将大的数据划分多个小的数据集,然后开启多个从步骤,要求每个从步骤负责一个数据集。当所有从步骤处理结束,整作业流程才算结束。

分区器

主步骤核心组件,负责数据分区,将完整的数据拆解成多个数据集,然后指派给从步骤,让其执行。

拆分规则由Partitioner分区器接口定制,默认的实现类:MultiResourcePartitioner

public interface Partitioner {
	Map<String, ExecutionContext> partition(int gridSize);
}

Partitioner 接口只有唯一的方法:partition 参数gridSize表示要分区的大小,可以理解为要开启多个worker步骤,返回值是一个Map, 其中key:worker步骤名称, value:worker步骤启动需要参数值,一般包含分区元数据,比如起始位置,数据量等。

分区处理器

主步骤核心组件,统一管理work 步骤, 并给work步骤指派任务。

管理规则由PartitionHandler 接口定义,默认的实现类:TaskExecutorPartitionHandler

需求:下面几个文件将数据读入内存

分析:

image-20230114212150401

步骤1:准备数据

user1-10.txt

1#dafei#18
2#dafei#18
3#dafei#18
4#dafei#18
5#dafei#18
6#dafei#18
7#dafei#18
8#dafei#18
9#dafei#18
10#dafei#18

user11-20.txt

11#dafei#18
12#dafei#18
13#dafei#18
14#dafei#18
15#dafei#18
16#dafei#18
17#dafei#18
18#dafei#18
19#dafei#18
20#dafei#18

user21-30.txt

21#dafei#18
22#dafei#18
23#dafei#18
24#dafei#18
25#dafei#18
26#dafei#18
27#dafei#18
28#dafei#18
29#dafei#18
30#dafei#18

user31-40.txt

31#dafei#18
32#dafei#18
33#dafei#18
34#dafei#18
35#dafei#18
36#dafei#18
37#dafei#18
38#dafei#18
39#dafei#18
40#dafei#18

user41-50.txt

41#dafei#18
42#dafei#18
43#dafei#18
44#dafei#18
45#dafei#18
46#dafei#18
47#dafei#18
48#dafei#18
49#dafei#18
50#dafei#18

步骤2:准备实体类

@Getter
@Setter
@ToString
public class User {
    private Long id;
    private String name;
    private int age;
}

步骤3:配置分区逻辑

public class UserPartitioner  implements Partitioner {
    @Override
    public Map<String, ExecutionContext> partition(int gridSize) {
        Map<String, ExecutionContext> result = new HashMap<>(gridSize);

        int range = 10; //文件间隔
        int start = 1; //开始位置
        int end = 10;  //结束位置
        String text = "user%s-%s.txt";

        for (int i = 0; i < gridSize; i++) {
            ExecutionContext value = new ExecutionContext();
            Resource resource = new ClassPathResource(String.format(text, start, end));
            try {
                value.putString("file", resource.getURL().toExternalForm());
            } catch (IOException e) {
                e.printStackTrace();
            }
            start += range;
            end += range;

            result.put("user_partition_" + i, value);
        }
        return result;
    }
}

步骤4:全部代码

package com.langfeiyes.batch._37_step_part;

import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepScope;
import org.springframework.batch.core.partition.PartitionHandler;
import org.springframework.batch.core.partition.support.MultiResourcePartitioner;
import org.springframework.batch.core.partition.support.TaskExecutorPartitionHandler;
import org.springframework.batch.item.ExecutionContext;
import org.springframework.batch.item.ItemWriter;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.builder.FlatFileItemReaderBuilder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.core.io.ClassPathResource;
import org.springframework.core.io.Resource;
import org.springframework.core.task.SimpleAsyncTaskExecutor;

import java.util.List;

@SpringBootApplication
@EnableBatchProcessing
public class PartStepJob {
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;



    //每个分区文件读取
    @Bean
    @StepScope
    public FlatFileItemReader<User> flatItemReader(@Value("#{stepExecutionContext['file']}") Resource resource){
        return new FlatFileItemReaderBuilder<User>()
                .name("userItemReader")
                .resource(resource)
                .delimited().delimiter("#")
                .names("id", "name", "age")
                .targetType(User.class)
                .build();
    }

    @Bean
    public ItemWriter<User> itemWriter(){
        return new ItemWriter<User>() {
            @Override
            public void write(List<? extends User> items) throws Exception {
                items.forEach(System.err::println);
            }
        };
    }


    //文件分区器-设置分区规则
    @Bean
    public UserPartitioner userPartitioner(){
        return new UserPartitioner();
    }

    //文件分区处理器-处理分区
    @Bean
    public PartitionHandler userPartitionHandler() {
        TaskExecutorPartitionHandler handler = new TaskExecutorPartitionHandler();
        handler.setGridSize(5);
        handler.setTaskExecutor(new SimpleAsyncTaskExecutor());
        handler.setStep(workStep());
        try {
            handler.afterPropertiesSet();
        } catch (Exception e) {
            e.printStackTrace();
        }
        return handler;
    }
    
    //每个从分区操作步骤
    @Bean
    public Step workStep() {
        return stepBuilderFactory.get("workStep")
                .<User, User>chunk(10)
                .reader(flatItemReader(null))
                .writer(itemWriter())
                .build();
    }

    //主分区操作步骤
    @Bean
    public Step masterStep() {
        return stepBuilderFactory.get("masterStep")
                .partitioner(workStep().getName(),userPartitioner())
                .partitionHandler(userPartitionHandler())
                .build();
    }


    @Bean
    public Job partJob(){
        return jobBuilderFactory.get("part-step-job")
                .start(masterStep())
                .build();
    }
    public static void main(String[] args) {
        SpringApplication.run(PartStepJob.class, args);
    }
}

结果:

User(id=31, name=dafei, age=18)
User(id=32, name=dafei, age=18)
User(id=33, name=dafei, age=18)
User(id=34, name=dafei, age=18)
User(id=35, name=dafei, age=18)
User(id=36, name=dafei, age=18)
User(id=37, name=dafei, age=18)
User(id=38, name=dafei, age=18)
User(id=39, name=dafei, age=18)
User(id=40, name=dafei, age=18)
User(id=41, name=dafei, age=18)
User(id=42, name=dafei, age=18)
User(id=43, name=dafei, age=18)
User(id=44, name=dafei, age=18)
User(id=45, name=dafei, age=18)
User(id=46, name=dafei, age=18)
User(id=47, name=dafei, age=18)
User(id=48, name=dafei, age=18)
User(id=49, name=dafei, age=18)
User(id=50, name=dafei, age=18)
User(id=21, name=dafei, age=18)
User(id=22, name=dafei, age=18)
User(id=23, name=dafei, age=18)
User(id=24, name=dafei, age=18)
User(id=25, name=dafei, age=18)
User(id=26, name=dafei, age=18)
User(id=27, name=dafei, age=18)
User(id=28, name=dafei, age=18)
User(id=29, name=dafei, age=18)
User(id=30, name=dafei, age=18)
User(id=1, name=dafei, age=18)
User(id=2, name=dafei, age=18)
User(id=3, name=dafei, age=18)
User(id=4, name=dafei, age=18)
User(id=5, name=dafei, age=18)
User(id=6, name=dafei, age=18)
User(id=7, name=dafei, age=18)
User(id=8, name=dafei, age=18)
User(id=9, name=dafei, age=18)
User(id=10, name=dafei, age=18)
User(id=11, name=dafei, age=18)
User(id=12, name=dafei, age=18)
User(id=13, name=dafei, age=18)
User(id=14, name=dafei, age=18)
User(id=15, name=dafei, age=18)
User(id=16, name=dafei, age=18)
User(id=17, name=dafei, age=18)
User(id=18, name=dafei, age=18)
User(id=19, name=dafei, age=18)
User(id=20, name=dafei, age=18)

解析:核心点

1>文件分区器:userPartitioner(), 分别加载5个文件进入到程序

2>文件分区处理器:userPartitionHandler() ,指定要分几个区,由谁来处理

3>分区从步骤:workStep() 指定读逻辑与写逻辑

4>分区文件读取:flatItemReader(),需要传入Resource对象,这个对象在userPartitioner()已经标记为file

5>分区主步骤:masterStep() ,指定分区名称与分区器,指定分区处理器

十三、综合案例

到这,整个Spring Batch 教程知识点就全部讲完了,接下来就使用一个综合案例将讲过核心知识串联起来,再来回顾一遍。

13.1 案例需求

1>先动态生成50w条员工数据,存放在employee.csv文件中

2>启动作业异步读取employee.csv文件,将读到数据写入到employee_temp表,要求记录读与写消耗时间

3>使用分区的方式将employee_temp表的数据读取并写入到employee表

13.2 分析

上面需求存在一定连贯性,为了操作简单,使用springMVC项目, 每一个需求对应一个接口:

1:发起 /dataInit 初始化50w数据进入employee.csv文件

​ 使用技术点:SpringMVC IO

2:发起**/csvToDB** 启动作业,将employee.csv 数据写入employee_temp表, 记录读与写消耗时间

​ 使用技术点:SpringMVC ItemReader JobExecutionListener

​ ItemWriter (如果使用Mybatis框架MyBatisBatchItemWriter/MyBatisPagingItemReaderReader)

3:发起**/dbToDB** 启动作业,将employee_temp数据写入employee表

​ 使用技术点:SpringMVC ItemReader partitioner

​ ItemWriter(如果使用Mybatis框架:MyBatisBatchItemWriter/MyBatisPagingItemReaderReader)

13.3 项目准备

步骤1:新开spring-batch-example

步骤2:导入依赖

<parent>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-parent</artifactId>
    <version>2.7.3</version>
    <relativePath/>
</parent>
<properties>
    <maven.compiler.source>11</maven.compiler.source>
    <maven.compiler.target>11</maven.compiler.target>
</properties>

<dependencies>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-web</artifactId>
    </dependency>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-batch</artifactId>
    </dependency>
    <dependency>
        <groupId>mysql</groupId>
        <artifactId>mysql-connector-java</artifactId>
        <version>8.0.12</version>
    </dependency>


    <dependency>
        <groupId>org.mybatis.spring.boot</groupId>
        <artifactId>mybatis-spring-boot-starter</artifactId>
        <version>1.3.2</version>
    </dependency>
    <dependency>
        <groupId>com.alibaba</groupId>
        <artifactId>druid-spring-boot-starter</artifactId>
        <version>1.1.14</version>
    </dependency>

    <dependency>
        <groupId>org.projectlombok</groupId>
        <artifactId>lombok</artifactId>
    </dependency>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-validation</artifactId>
    </dependency>
</dependencies>

步骤3:配置文件

spring:
  datasource:
    username: root
    password: admin
    url: jdbc:mysql://127.0.0.1:3306/springbatch?serverTimezone=GMT%2B8&useSSL=false&allowPublicKeyRetrieval=true
    driver-class-name: com.mysql.cj.jdbc.Driver
    # 初始化数据库,文件在依赖jar包中
  sql:
    init:
      schema-locations: classpath:org/springframework/batch/core/schema-mysql.sql
      #mode: always
      mode: never
  batch:
    job:
      enabled: false

  druid:
    # 连接池配置
    #初始化连接池的连接数量 大小,最小,最大
    initial-size: 10
    min-idle: 10
    max-active: 20
    #配置获取连接等待超时的时间
    max-wait: 60000
    #配置间隔多久才进行一次检测,检测需要关闭的空闲连接,单位是毫秒
    time-between-eviction-runs-millis: 60000
    # 配置一个连接在池中最小生存的时间,单位是毫秒
    min-evictable-idle-time-millis: 30000
    validation-query: SELECT 1 FROM DUAL
    test-while-idle: true
    test-on-borrow: true
    test-on-return: false
    # 是否缓存preparedStatement,也就是PSCache  官方建议MySQL下建议关闭   个人建议如果想用SQL防火墙 建议打开
    pool-prepared-statements: false
    max-pool-prepared-statement-per-connection-size: 20

mybatis:
  configuration:
    default-executor-type: batch


job:
  data:
    path: D:/spring-batch-example/

步骤4:建立employee表与employe_temp表

CREATE TABLE `employee` (
  `id` int NOT NULL AUTO_INCREMENT,
  `name` varchar(255) DEFAULT NULL,
  `age` int DEFAULT NULL,
  `sex` int DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb3;
CREATE TABLE `employee_temp` (
  `id` int NOT NULL AUTO_INCREMENT,
  `name` varchar(255) DEFAULT NULL,
  `age` int DEFAULT NULL,
  `sex` int DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb3;

步骤5:建立基本代码体系-domain-mapper-service-controller-mapper.xml

image-20221209150325367

domain

@Setter
@Getter
@ToString
public class Employee {
    private Long id;
    private String name;
    private int age;
    private int sex;
}

mapper.java

public interface EmployeeMapper {

    /**
     * 添加
     */
    int save(Employee employee);
}

service接口

public interface IEmployeeService {
    /**
     * 保存
     */
    void save(Employee employee);
}

service接口实现类

@Service
public class EmployeeServiceImpl implements IEmployeeService {
    @Autowired
    private EmployeeMapper employeeMapper;
    @Override
    public void save(Employee employee) {
        employeeMapper.save(employee);
    }
}

启动类

@SpringBootApplication
@EnableBatchProcessing
@MapperScan("com.langfeiyes.exp.mapper")
public class App {

    public static void main(String[] args) {
        SpringApplication.run(App.class, args);
    }
}

Mapper.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE mapper PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN" "http://mybatis.org/dtd/mybatis-3-mapper.dtd">
<mapper namespace="com.langfeiyes.exp.mapper.EmployeeMapper">

    <resultMap id="BaseResultMap" type="com.langfeiyes.exp.domain.Employee">
        <result column="id" jdbcType="INTEGER" property="id" />
        <result column="name" jdbcType="VARCHAR" property="name" />
        <result column="age" jdbcType="VARCHAR" property="age" />
        <result column="sex" jdbcType="VARCHAR" property="sex" />
    </resultMap>


    <insert id="save" keyColumn="id" useGeneratedKeys="true" keyProperty="id">
        insert into employee(id, name, age, sex) values(#{id},#{name},#{age},#{sex})
    </insert>
</mapper>

13.4 需求一

需求:先动态生成50w条员工数据,存放再employee.csv文件中

步骤1:定义:DataInitController

@RestController
public class DataInitController {

    @Autowired
    private IEmployeeService employeeService;

    @GetMapping("/dataInit")
    public String dataInit() throws IOException {
        employeeService.dataInit();
        return "ok";
    }
}

步骤2:在IEmployeeService 添加dataInit 方法

public interface IEmployeeService {
    /**
     * 保存
     */
    void save(Employee employee);

    /**
     * 初始化数据:生成50w数据
     */
    void dataInit() throws IOException;
}

步骤3:在EmployeeServiceImpl 实现方法

@Service
public class EmployeeServiceImpl implements IEmployeeService {
    @Autowired
    private EmployeeMapper employeeMapper;
    @Override
    public void save(Employee employee) {
        employeeMapper.save(employee);
    }

    @Value("${job.data.path}")
    public String path;

    @Override
    public void dataInit() throws IOException {
        File file = new File(path, "employee.csv");
        if (file.exists()) {
            file.delete();
        }
        file.createNewFile();
        FileOutputStream out = new FileOutputStream(file);
        String txt = "";

        Random ageR = new Random();
        Random boolR = new Random();

        // 给文件中生产50万条数据
        long beginTime = System.currentTimeMillis();
        System.out.println("开始时间:【 " + beginTime + " 】");
        for (int i = 1; i <= 500000; i++) {
            if(i == 500000){
                txt = i+",dafei_"+ i +"," + ageR.nextInt(100) + "," + (boolR.nextBoolean()?1:0);
            }else{
                txt = i+",dafei_"+ i +"," + ageR.nextInt(100) + "," + (boolR.nextBoolean()?1:0) +"\n";
            }

            out.write(txt.getBytes());
            out.flush();
        }
        out.close();
        System.out.println("总共耗时:【 " + (System.currentTimeMillis() - beginTime) + " 】毫秒");
    }
}

步骤4:访问http://localhost:8080/dataInit 生成数据。

image-20221209153946838

image-20221209154012225

13.5 需求二

需求:启动作业异步读取employee.csv文件,将读到数据写入到employee_temp表,要求记录读与写消耗时间

步骤1:修改IEmployeeService 接口

public interface IEmployeeService {
    /**
     * 保存
     */
    void save(Employee employee);

    /**
     * 初始化数据:生成50w数据
     */
    void dataInit() throws IOException;
    
    /**
     * 清空数据
     */
    void truncateAll();
    
    /**
     * 清空employee_temp数据
     */
    void truncateTemp();
}

步骤2:修改EmployeeServiceImpl

@Override
public void truncateAll() {
    employeeMapper.truncateAll();
}

@Override
public void truncateTemp() {
    employeeMapper.truncateTemp();
}

步骤3:修改IEmployeeMapper.java

public interface EmployeeMapper {

    /**
     * 添加
     */
    int save(Employee employee);

    /**
     * 添加临时表
     * @param employee
     * @return
     */
    int saveTemp(Employee employee);

    /**
     * 清空数据
     */
    void truncateAll();

    /**
     * 清空临时表数据
     */
    void truncateTemp();
}

步骤4:修改EmployeeMapper.xml

<insert id="saveTemp" keyColumn="id" useGeneratedKeys="true" keyProperty="id">
    insert into employee_temp(id, name, age, sex) values(#{id},#{name},#{age},#{sex})
</insert>

<delete id="truncateAll">
    truncate employee
</delete>

<delete id="truncateTemp">
    truncate employee_temp
</delete>

步骤5:在com.langfeiyes.exp.job.listener 包新建监听器,用于计算开始结束时间

package com.langfeiyes.exp.job.listener;

import org.springframework.batch.core.JobExecution;
import org.springframework.batch.core.JobExecutionListener;


public class CsvToDBJobListener implements JobExecutionListener {

    @Override
    public void beforeJob(JobExecution jobExecution) {
            long begin = System.currentTimeMillis();
            jobExecution.getExecutionContext().putLong("begin", begin);
            System.err.println("-------------------------【CsvToDBJob开始时间:】---->"+begin+"<-----------------------------");
        }

    @Override
    public void afterJob(JobExecution jobExecution) {
                long begin = jobExecution.getExecutionContext().getLong("begin");
                long end = System.currentTimeMillis();
                System.err.println("-------------------------【CsvToDBJob结束时间:】---->"+end+"<-----------------------------");
                System.err.println("-------------------------【CsvToDBJob总耗时:】---->"+(end - begin)+"<-----------------------------");
            }
}

步骤6:在com.langfeiyes.exp.job.config包定义CsvToDBJobConfig配置类

package com.langfeiyes.exp.job.config;


import com.langfeiyes.exp.domain.Employee;
import com.langfeiyes.exp.job.listener.CsvToDBJobListener;
import org.apache.ibatis.session.SqlSessionFactory;
import org.mybatis.spring.batch.MyBatisBatchItemWriter;
import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.core.launch.support.RunIdIncrementer;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.builder.FlatFileItemReaderBuilder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.core.io.PathResource;
import org.springframework.core.task.SimpleAsyncTaskExecutor;

import java.io.File;

/**
 * 将数据从csv文件中读取,并写入数据库
 */
@Configuration
public class CsvToDBJobConfig {
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;

    @Autowired
    private SqlSessionFactory sqlSessionFactory;

    @Value("${job.data.path}")
    private String path;

    //多线程读-读文件,使用FlatFileItemReader
    @Bean
    public FlatFileItemReader<Employee> cvsToDBItemReader(){
        FlatFileItemReader<Employee> reader = new FlatFileItemReaderBuilder<Employee>()
                .name("employeeCSVItemReader")
                .saveState(false) //防止状态被覆盖
                .resource(new PathResource(new File(path, "employee.csv").getAbsolutePath()))
                .delimited()
                .names("id", "name", "age", "sex")
                .targetType(Employee.class)
                .build();

        return reader;
    }

    //数据库写-使用mybatis提供批处理读入
    @Bean
    public MyBatisBatchItemWriter<Employee> cvsToDBItemWriter(){
        MyBatisBatchItemWriter<Employee> itemWriter = new MyBatisBatchItemWriter<>();
        itemWriter.setSqlSessionFactory(sqlSessionFactory); //需要指定sqlsession工厂
        //指定要操作sql语句,路径id为:EmployeeMapper.xml定义的sql语句id
        itemWriter.setStatementId("com.langfeiyes.exp.mapper.EmployeeMapper.saveTemp");  //操作sql
        return itemWriter;
    }

    @Bean
    public Step csvToDBStep(){
        return stepBuilderFactory.get("csvToDBStep")
                .<Employee, Employee>chunk(10000)  //每个块10000个 共50个
                .reader(cvsToDBItemReader())
                .writer(cvsToDBItemWriter())
                .taskExecutor(new SimpleAsyncTaskExecutor())  //多线程读写
                .build();

    }

    //job监听器
    @Bean
    public CsvToDBJobListener csvToDBJobListener(){
        return new CsvToDBJobListener();
    }

    @Bean
    public Job csvToDBJob(){
        return jobBuilderFactory.get("csvToDB-step-job")
                .start(csvToDBStep())
                .incrementer(new RunIdIncrementer()) //保证可以多次执行
                .listener(csvToDBJobListener())
                .build();

    }
}

步骤7:在com.langfeiyes.exp.controller 添加JobController

package com.langfeiyes.exp.controller;

import com.langfeiyes.exp.service.IEmployeeService;
import org.springframework.batch.core.*;
import org.springframework.batch.core.explore.JobExplorer;
import org.springframework.batch.core.launch.JobLauncher;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;

import java.util.Date;

@RestController
public class JobController {

    @Autowired
    private IEmployeeService employeeService;

    @Autowired
    private JobLauncher jobLauncher;

    @Autowired
    private JobExplorer jobExplorer;

    @Autowired
    @Qualifier("csvToDBJob")
    private Job csvToDBJob;

    @GetMapping("/csvToDB")
    public String csvToDB() throws Exception {
        employeeService.truncateTemp(); //清空数据运行多次执行
        
        //需要多次执行,run.id 必须重写之前,再重构一个新的参数对象
        JobParameters jobParameters = new JobParametersBuilder(new JobParameters(),jobExplorer)
                .addLong("time", new Date().getTime())
                .getNextJobParameters(csvToDBJob).toJobParameters();
        JobExecution run = jobLauncher.run(csvToDBJob, jobParameters);
        return run.getId().toString();
    }
}

步骤8:访问测试:http://localhost:8080/csvToDB

-------------------------CsvToDBJob开始时间:】---->1670575356773<-----------------------------
-------------------------CsvToDBJob结束时间:】---->1670575510967<-----------------------------
-------------------------CsvToDBJob总耗时:】---->154194<-----------------------------

13.6 需求三

需求:使用分区的方式将employee_temp表的数据读取并写入到employee表

步骤1:在com.langfeiyes.exp.job.config 包添加DBToDBJobConfig, 配置从数据库到数据库的作业

package com.langfeiyes.exp.job.config;


import com.langfeiyes.exp.domain.Employee;
import com.langfeiyes.exp.job.partitioner.DBToDBPartitioner;
import org.apache.ibatis.session.SqlSessionFactory;
import org.mybatis.spring.batch.MyBatisBatchItemWriter;
import org.mybatis.spring.batch.MyBatisPagingItemReader;
import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepScope;
import org.springframework.batch.core.launch.support.RunIdIncrementer;
import org.springframework.batch.core.partition.PartitionHandler;
import org.springframework.batch.core.partition.support.TaskExecutorPartitionHandler;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.core.task.SimpleAsyncTaskExecutor;

import java.io.File;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

/**
 * 将数据从employee_temp中读取,并写入employe 表
 */
@Configuration
public class DBToDBJobConfig {
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;

    @Autowired
    private SqlSessionFactory sqlSessionFactory;

    public static int PAGESIZE = 1000;   //mybatis分页读取数据,跟chunkSize 一样
    public static int RANGE = 10000;  //每个分区读取数据范围(理解为个数)
    public static int GRIDSIZE = 50;  //分区个数


    //读数据-从employee_temp 表读 -- mybatis
    @Bean
    @StepScope
    public MyBatisPagingItemReader<Employee> dBToDBJobItemReader(
            @Value("#{stepExecutionContext[from]}") final Integer from,
            @Value("#{stepExecutionContext[to]}") final Integer to,
            @Value("#{stepExecutionContext[range]}") final Integer range){

        System.out.println("----------MyBatisPagingItemReader开始-----from: " + from + "  -----to:" + to + "  -----每片数量:" + range);
        MyBatisPagingItemReader<Employee> itemReader = new MyBatisPagingItemReader<Employee>();
        itemReader.setSqlSessionFactory(sqlSessionFactory);
        itemReader.setQueryId("com.langfeiyes.exp.mapper.EmployeeMapper.selectTempForList");
        itemReader.setPageSize(DBToDBJobConfig.PAGESIZE);
        Map<String, Object> map = new HashMap<>();
        map.put("from", from);
        map.put("to", to);
        itemReader.setParameterValues(map);

        return itemReader;
    }


    //数据库写- 写入到employee 表中
   @Bean
    public MyBatisBatchItemWriter<Employee> dbToDBItemWriter(){
        MyBatisBatchItemWriter<Employee> itemWriter = new MyBatisBatchItemWriter<>();
        itemWriter.setSqlSessionFactory(sqlSessionFactory);
        itemWriter.setStatementId("com.langfeiyes.exp.mapper.EmployeeMapper.save");  //操作sql
        return itemWriter;
    }

    //文件分区处理器-处理分区
    @Bean
    public PartitionHandler dbToDBPartitionHandler() {
        TaskExecutorPartitionHandler handler = new TaskExecutorPartitionHandler();
        handler.setGridSize(DBToDBJobConfig.GRIDSIZE);
        handler.setTaskExecutor(new SimpleAsyncTaskExecutor());
        handler.setStep(workStep());
        try {
            handler.afterPropertiesSet();
        } catch (Exception e) {
            e.printStackTrace();
        }
        return handler;
    }

    //每个从分区操作步骤
    @Bean
    public Step workStep() {
        return stepBuilderFactory.get("workStep")
                .<Employee, Employee>chunk(DBToDBJobConfig.PAGESIZE)
                .reader(dBToDBJobItemReader(null, null, null))
                .writer(dbToDBItemWriter())
                .build();
    }

    @Bean
    public DBToDBPartitioner dbToDBPartitioner(){
        return new DBToDBPartitioner();
    }

    //主分区操作步骤
    @Bean
    public Step masterStep() {
        return stepBuilderFactory.get("masterStep")
                .partitioner(workStep().getName(),dbToDBPartitioner())
                .partitionHandler(dbToDBPartitionHandler())
                .build();
    }

    @Bean
    public Job dbToDBJob(){
        return jobBuilderFactory.get("dbToDB-step-job")
                .start(masterStep())
                .incrementer(new RunIdIncrementer())
                .build();
    }
}

步骤2:修改EmployeeMapper.xml

<select id="selectTempForList" resultMap="BaseResultMap">
    select * from employee_temp where id between #{from} and #{to}  limit #{_pagesize} OFFSET #{_skiprows}
</select>

步骤3:在com.langfeiyes.exp.job.partitioner 创建DBToDBPartitioner, 用于分区

package com.langfeiyes.exp.job.partitioner;

import com.langfeiyes.exp.job.config.DBToDBJobConfig;
import org.springframework.batch.core.partition.support.Partitioner;
import org.springframework.batch.item.ExecutionContext;

import java.util.HashMap;
import java.util.Map;

public class DBToDBPartitioner implements Partitioner {
    //约定分50个区, 每个区10000个数据
    @Override
    public Map<String, ExecutionContext> partition(int gridSize) {
        String text = "----DBToDBPartitioner---第%s分区-----开始:%s---结束:%s---数据量:%s--------------";

        Map<String, ExecutionContext> map = new HashMap<>();
        int from = 1;
        int to = DBToDBJobConfig.RANGE;
        int range = DBToDBJobConfig.RANGE;

        for (int i = 0; i < gridSize; i++) {
            System.out.println(String.format(text, i, from, to, (to - from + 1)));
            ExecutionContext context = new ExecutionContext();
            context.putInt("from", from);
            context.putInt("to", to);
            context.putInt("range", range);

            from += range;
            to += range;

            map.put("partition_" + i, context);
        }
        return map;
    }
}

步骤4:修改JobController 类

@GetMapping("/dbToDB")
public String dbToDB() throws Exception {
    employeeService.truncateAll();
    JobParameters jobParameters = new JobParametersBuilder(new JobParameters(),jobExplorer)
        .addLong("time", new Date().getTime())
        .getNextJobParameters(dbToDBJob).toJobParameters();
    JobExecution run = jobLauncher.run(dbToDBJob, jobParameters);
    return run.getId().toString();
}

步骤8:访问:http://localhost:8080/dbToDB

----DBToDBPartitioner---0分区-----开始:1---结束:10000---数据量:10000--------------
----DBToDBPartitioner---1分区-----开始:10001---结束:20000---数据量:10000--------------
----DBToDBPartitioner---2分区-----开始:20001---结束:30000---数据量:10000--------------
----DBToDBPartitioner---3分区-----开始:30001---结束:40000---数据量:10000--------------
----DBToDBPartitioner---4分区-----开始:40001---结束:50000---数据量:10000--------------
----DBToDBPartitioner---5分区-----开始:50001---结束:60000---数据量:10000--------------
----DBToDBPartitioner---6分区-----开始:60001---结束:70000---数据量:10000--------------
----DBToDBPartitioner---7分区-----开始:70001---结束:80000---数据量:10000--------------
----DBToDBPartitioner---8分区-----开始:80001---结束:90000---数据量:10000--------------
----DBToDBPartitioner---9分区-----开始:90001---结束:100000---数据量:10000--------------
----DBToDBPartitioner---10分区-----开始:100001---结束:110000---数据量:10000--------------
----DBToDBPartitioner---11分区-----开始:110001---结束:120000---数据量:10000--------------
----DBToDBPartitioner---12分区-----开始:120001---结束:130000---数据量:10000--------------
----DBToDBPartitioner---13分区-----开始:130001---结束:140000---数据量:10000--------------
----DBToDBPartitioner---14分区-----开始:140001---结束:150000---数据量:10000--------------
----DBToDBPartitioner---15分区-----开始:150001---结束:160000---数据量:10000--------------
----DBToDBPartitioner---16分区-----开始:160001---结束:170000---数据量:10000--------------
----DBToDBPartitioner---17分区-----开始:170001---结束:180000---数据量:10000--------------
----DBToDBPartitioner---18分区-----开始:180001---结束:190000---数据量:10000--------------
----DBToDBPartitioner---19分区-----开始:190001---结束:200000---数据量:10000--------------
----DBToDBPartitioner---20分区-----开始:200001---结束:210000---数据量:10000--------------
----DBToDBPartitioner---21分区-----开始:210001---结束:220000---数据量:10000--------------
----DBToDBPartitioner---22分区-----开始:220001---结束:230000---数据量:10000--------------
----DBToDBPartitioner---23分区-----开始:230001---结束:240000---数据量:10000--------------
----DBToDBPartitioner---24分区-----开始:240001---结束:250000---数据量:10000--------------
----DBToDBPartitioner---25分区-----开始:250001---结束:260000---数据量:10000--------------
----DBToDBPartitioner---26分区-----开始:260001---结束:270000---数据量:10000--------------
----DBToDBPartitioner---27分区-----开始:270001---结束:280000---数据量:10000--------------
----DBToDBPartitioner---28分区-----开始:280001---结束:290000---数据量:10000--------------
----DBToDBPartitioner---29分区-----开始:290001---结束:300000---数据量:10000--------------
----DBToDBPartitioner---30分区-----开始:300001---结束:310000---数据量:10000--------------
----DBToDBPartitioner---31分区-----开始:310001---结束:320000---数据量:10000--------------
----DBToDBPartitioner---32分区-----开始:320001---结束:330000---数据量:10000--------------
----DBToDBPartitioner---33分区-----开始:330001---结束:340000---数据量:10000--------------
----DBToDBPartitioner---34分区-----开始:340001---结束:350000---数据量:10000--------------
----DBToDBPartitioner---35分区-----开始:350001---结束:360000---数据量:10000--------------
----DBToDBPartitioner---36分区-----开始:360001---结束:370000---数据量:10000--------------
----DBToDBPartitioner---37分区-----开始:370001---结束:380000---数据量:10000--------------
----DBToDBPartitioner---38分区-----开始:380001---结束:390000---数据量:10000--------------
----DBToDBPartitioner---39分区-----开始:390001---结束:400000---数据量:10000--------------
----DBToDBPartitioner---40分区-----开始:400001---结束:410000---数据量:10000--------------
----DBToDBPartitioner---41分区-----开始:410001---结束:420000---数据量:10000--------------
----DBToDBPartitioner---42分区-----开始:420001---结束:430000---数据量:10000--------------
----DBToDBPartitioner---43分区-----开始:430001---结束:440000---数据量:10000--------------
----DBToDBPartitioner---44分区-----开始:440001---结束:450000---数据量:10000--------------
----DBToDBPartitioner---45分区-----开始:450001---结束:460000---数据量:10000--------------
----DBToDBPartitioner---46分区-----开始:460001---结束:470000---数据量:10000--------------
----DBToDBPartitioner---47分区-----开始:470001---结束:480000---数据量:10000--------------
----DBToDBPartitioner---48分区-----开始:480001---结束:490000---数据量:10000--------------
----DBToDBPartitioner---49分区-----开始:490001---结束:500000---数据量:10000--------------
----------MyBatisPagingItemReader开始-----from: 250001  -----to:260000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 290001  -----to:300000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 80001  -----to:90000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 410001  -----to:420000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 360001  -----to:370000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 230001  -----to:240000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 40001  -----to:50000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 340001  -----to:350000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 450001  -----to:460000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 110001  -----to:120000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 350001  -----to:360000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 50001  -----to:60000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 430001  -----to:440000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 20001  -----to:30000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 120001  -----to:130000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 190001  -----to:200000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 100001  -----to:110000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 470001  -----to:480000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 60001  -----to:70000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 200001  -----to:210000  -----每片数量:10000

到这,案例就全部结束了。

上次编辑于:
贡献者: 诗人都藏在水底